Skip to main content

A First-Order Logic for Reasoning About Higher-Order Upper and Lower Probabilities

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10369))

Abstract

We present a first-order probabilistic logic for reasoning about the uncertainty of events modeled by sets of probability measures. In our language, we have formulas that essentially say that “according to agent Ag, for all x, formula \(\alpha (x)\) holds with the lower probability at least \(\frac{1}{3}\)”. Also, the language is powerful enough to allow reasoning about higher order upper and lower probabilities. We provide corresponding Kripke-style semantics, axiomatize the logic and prove that the axiomatization is sound and strongly complete (every satisfiable set of formulas is consistent).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For a discussion on higher-order probabilities we refer the reader to [10].

References

  1. Anger, B., Lembcke, J.: Infnitely subadditive capacities as upper envelopes of measures. Z. Wahrscheinlichkeitstheorie Verwandte Gebiete 68, 403–414 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. de Cooman, G., Hermans, F.: Imprecise probability trees: bridging two theories of imprecise probability. Artif. Intell. 172(11), 1400–1427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doder, D.: A logic with big-stepped probabilities that can model nonmonotonic reasoning of system P. Pub. Inst. Math. 90(104), 13–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doder, D., Ognjanović, Z.: Probabilistic logics with independence and confirmation. Stud. Logica (2017). doi:10.1007/s11225-017-9718-z

  5. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  6. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fattorosi-Barnaba, M., Amati, G.: Modal operators with probabilistic interpretations. Stud. Logica 46(4), 383–393 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frisch, A., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69, 93–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gaifman, H., Haddawy, P.: A theory of higher order probabilities. Causation, Chance and Credence, vol. 41, pp. 191–219. Springer, Netherlands (1988)

    Chapter  Google Scholar 

  11. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halpern, J.Y., Pucella, R.: A logic for reasoning about upper probabilities. J. Artif. Intell. Res. 17, 57–81 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econ. Behav. 35, 31–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  15. Kyburg, H.E.: Probability and the Logic of Rational Belief. Wesleyan University Press, Middletown (1961)

    Google Scholar 

  16. Lorentz, G.G.: Multiply subadditive functions. Can. J. Math. 4(4), 455–462 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meier, M.: An infinitary probability logic for type spaces. Isr. J. Math. 192(1), 1–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miranda, E.: A survey of the theory of coherent lower previsions. Int. J. Approximate Reasoning 48(2), 628–658 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ognjanović, Z., Rašković, M.: Some first-order probability logics. Theor. Comput. Sci. 247(1–2), 191–212 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Savić, N., Doder, D., Ognjanović, Z.: A logic with upper and lower probability operators. In: Proceedings of the 9th International Symposium on Imprecise Probability: Theories and Applications, pp. 267–276, Pescara, Italy (2015)

    Google Scholar 

  21. Savić, N., Doder, D., Ognjanović, Z.: Logics with lower and upper probability operators. Int. J. Approximate Reasoning (2017). doi:10.1016/j.ijar.2017.05.013

  22. van der Hoek, W.: Some consideration on the logics \(P_{F}D\). J. Appl. Non-Classical Logics 7(3), 287–307 (1997)

    Article  MathSciNet  Google Scholar 

  23. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  MATH  Google Scholar 

  24. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approximate Reasoning 24(2–3), 125–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the SNSF project 200021\(\_\)165549 Justifications and non-classical reasoning, and by the Serbian Ministry of Education and Science through projects ON174026, III44006 and ON174008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Savić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Savić, N., Doder, D., Ognjanović, Z. (2017). A First-Order Logic for Reasoning About Higher-Order Upper and Lower Probabilities. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61581-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61580-6

  • Online ISBN: 978-3-319-61581-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics