Skip to main content

Saliva-Based Point-of-Care in Oral Cancer Detection: Current Trend and Future Opportunities

  • Chapter
  • First Online:
Oral Cancer Detection

Abstract

Development of point-of-care (POC) for saliva-based, noninvasive detection of OSCC is an active area of research. Portable and easy-to-use biomedical devices and advanced electrochemical platforms (OFNASET) or simple paper-strip chromatography (e.g., OncAlert ®), based on a single or a panel of salivary biomarkers, are already available for clinical use. In this chapter, the emerging core technologies and approaches assisting early POC detection are discussed. Knowledge from closely related fields like nanotechnology is also summarized to provide insight on possible future approaches that can be tailored for oral cancer detection. POC for oral cancer can be designed to work on a potential biomarker candidate (validated in multi-cohort and multiethnic studies) among the wide range of 100 signature analytes from proteins to RNA, cytomorphometry of exfoliated cells in saliva (analogous to circulating tumor cells in plasma), or through high-throughput screening of salivary exosomes for potential signatures. Surface-enhanced Raman scattering (SERS) was also used as a saliva assay previously, and such attempts will evolve significantly if saliva samples are mucin-free. ELISA is a common method for low-cost protein detection, with great POC potential. Its performance can be optimized through bead and nanoparticle technology. Sophisticated Luminex multi-analyte profiling (xMAP) technology and metal-linked immunosorbent assay (MeLISA), based on ELISA and biocatalytic ability of enzymes, were already reported with high sensitivity and specificity, which can be extrapolated to saliva samples. Some technologies have also assisted detection of mutations, such as “electric field-induced release and measurement” (EFIRM) recently deployed for identification of EGFR mutations through saliva samples. In this chapter, we have narrated the current trend and future opportunities for POC development in saliva-based oral cancer detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong DT. Towards a simple, saliva-based test for the detection of oral cancer 'oral fluid (saliva), which is the mirror of the body, is a perfect medium to be explored for health and disease surveillance'. Expert Rev Mol Diagn. 2006;6:267–72.

    Article  PubMed  Google Scholar 

  2. Kaczor-Urbanowicz KE, Carreras-Presas CM, Kaczor T, Michael T, Wei F, Garcia-Godoy F, Wong DTW. Emerging technologies for salivaomics in cancer detection. J Cell Mol Med. 2017;21:640–7.

    Article  PubMed  Google Scholar 

  3. Daniel Malamud, Isaac R. Rodriguez-Chavez. Saliva as a Diagnostic fluid. Dent Clin N Am 2011; 55: 159–178.

    Google Scholar 

  4. Lee Y-H, Saliva DTW. An emerging biofluid for early detection of diseases. Am J Dent. 2009;22:241–8.

    PubMed  PubMed Central  Google Scholar 

  5. Ziober BL, Mauk MG, Falls EM, Chen Z, Ziober AF, Bau HH. Lab-on-a-chip for oral cancer screening and diagnosis. Head Neck. 2008;30:111–21.

    Article  PubMed  Google Scholar 

  6. Malhotra R, Patel V, Chikkaveeraiah BV, Munge BS, Cheong SC, Zain RB, et al. Ultrasensitive detection of Cancer biomarkers in the clinic using a nanostructured microfluidic Array. Anal Chem. 2012;84:6249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Munge BS, Coffey AL, Doucette JM, Somba BK, Malhotra R, Patel V, et al. Nanostructured immunosensor for attomolar detection of cancer biomarker interleukin-8 using massively labeled superparamagnetic particles. Angew Chem Int Ed Engl. 2011;50:7915–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kumar S, Kumar S, Ali MA, Anand P, Agrawal VV, John R, Maji S, Malhotra BD. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Biotechnol J. 2013;8:1267–79.

    Article  PubMed  Google Scholar 

  9. Zhang JZ, Nagrath S. Microfluidics and Cancer: are we there yet? Biomed Microdevices. 2013;15:595–609.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ying L, Wang Q. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis. BMC Biotechnol. 2013;13:76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10:505–11.

    Article  PubMed  Google Scholar 

  12. Wang H, Liu W, Zhang X, Xu X, Kang Z, Li S, et al. Toward point-of-care testing for JAK2 V617F mutation on a microchip. J Chromatogr A. 2015;1410:28–34.

    Article  PubMed  Google Scholar 

  13. Hayama FH, Motta AC, Silva Ade P, Migliari DA. Liquid-based preparations versus conventional cytology: specimen adequacy and diagnostic agreement in oral lesions. Med Oral Patol Oral Cir Bucal. 2005;10:115–22.

    PubMed  Google Scholar 

  14. Navone R, Burlo P, Pich A, Pentenero M, Broccoletti R, Marsico A, et al. The impact of liquid-based oral cytology on the diagnosis of oral squamous dysplasia and carcinoma. Cytopathology. 2007;18:356–60.

    Article  PubMed  Google Scholar 

  15. Navone R. Cytology of the oral cavity: a re-evaluation. Pathologica. 2009;101:6–8.

    PubMed  Google Scholar 

  16. McDevitt J, Weigum SE, Floriano PN, Christodoulides N, et al. A new bio-nanochip sensor aids oral cancer detection. SPIE Newsroom. 2011;003547

    Google Scholar 

  17. Weigum SE, Floriano PN, Redding SW, Yeh CK, Westbrook SD, McGuff HS, et al. Nano-bio-chip sensor platform for examination of oral exfoliative cytology. Cancer Prev Res (Phila). 2010;3:518–28.

    Article  Google Scholar 

  18. Weigum SE, Floriano PN, Christodoulides N, McDevitt JT. Cell-based sensor for analysis of EGFR biomarker expression in oral cancer. Lab Chip. 2007;7:995–1003.

    Article  PubMed  Google Scholar 

  19. Abram TJ, Floriano PN, Christodoulides N, James R, Kerr AR, Thornhill MH, et al. ‘Cytology-on-a-chip’ based sensors for monitoring of potentially malignant oral lesions. Oral Oncol. 2016; 60: 103-11.

    Google Scholar 

  20. Whitesides GM, Wilding P. Lab on a stamp: paper-based diagnostic tools. Interview by Molly Webster and Vikram Sheel Kumar Clin Chem 2012; 58:956–8.

    Google Scholar 

  21. Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210–51.

    Article  PubMed  Google Scholar 

  22. Alicia D. Powers, Sean P. Palecek, Ph. D. Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. J Healthc Eng. 2012;3:503–34.

    Article  Google Scholar 

  23. Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA. Optimization of a paper-based ELISA for a human performance biomarker. Anal Chem. 2013;85:11634–42.

    Article  PubMed  Google Scholar 

  24. Tan W, Sabet L, Li Y, Yu T, Klokkevold PR, Wong DT, et al. Optical protein sensor for detecting cancer markers in saliva. Biosens Bioelectron. 2008;24:266–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sanjay ST, Dou M, Sun J, Li X. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Sci Rep. 2016;6:30474.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Markopoulos AK, Michailidou EZ, Tzimagiorgis G. Salivary markers for oral Cancer detection. Open Dent J. 2010;4:172–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Venugopal A, Uma Maheswari TN. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: a systematic review. J Oral Maxillofac Pathol. 2016;20:474–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Arellano-Garcia ME, Hu S, Wang J, Henson B, Zhou H, Chia D, et al. Multiplexed immunobead-based assay for detection of oral cancer protein biomarkers in saliva. Oral Dis. 2008;14:705–12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed Point-of-Care Testing - xPOCT. Trends Biotechnol. 2017;35:728–42.

    Google Scholar 

  30. Baker HN, Murphy R, Lopez E, Garcia C. Conversion of a Capture ELISA to a Luminex xMAP Assay using a Multiplex Antibody Screening Method. J Vis Exp. 2012; (65): 4084. (refervedio).

    Google Scholar 

  31. Yu R-J, Ma W, Liu X-Y, Jin H-Y, Han H-X, Wang H-Y, Long Y-T, et al. Metal-linked Immunosorbent Assay (MeLISA): the enzyme-free alternative to ELISA for biomarker detection in serum. Theranostics. 2016;6:1732–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Malhotra R, Patel V, Vaqué JP, Silvio Gutkind J, Rusling JF. Ultrasensitive electrochemical Immunosensor for oral Cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem. 2010;82:3118–23.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hart RW, Mauk MG, Liu C, Qiu X, Thompson JA, Chen D, Malamud D, Abrams WR, Bau HH. Point-of-careoral-baseddiagnostics. Oral Dis. 2011;17:745–52.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, Singh AK. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci U S A. 2007;104:5268–73.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, Costa-García A, López-Martín S, Yáñez-Mó M, et al. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles. 2016;5:31803.

    Article  PubMed  Google Scholar 

  36. Segal A, Wong DT. Salivary diagnostics: enhancing disease detection and making medicine better. Eur J Dent Educ. 2008;12:22–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wei F, Patel P, Liao W, Chaudhry K, Zhang L, Arellano-Garcia M, et al. Electrochemical sensor for multiplex biomarkers detection. Clin Cancer Res. 2009;15:4446–52.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fang WE, Wong DT. Point-of-care platforms for salivary diagnostics. Chin J Dent Res. 2012;15:7–15.

    Google Scholar 

  39. Wei F, Lin CC, Joon A, Feng Z, Troche G, Lira ME, et al. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer. Am J Respir Crit Care Med. 2014;190:1117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pu D, Liang H, Wei F, Akin D, Feng Z, Yan Q, et al. Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: A pilot study. Thorac Cancer. 2016; 7: 428-36.

    Google Scholar 

  41. Aro K, Wei F, Wong DT, Michael T. Saliva liquid biopsy for point-of-care applications. Front Public Health. 2017;5:77.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Wei F, Schafer C, Wong DT. Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS One. 2014;9:e110641.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tu M, Wei F, Yang J, Wong D. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). J Vis Exp. 2015;95:52439.

    Google Scholar 

  44. Tan Y, Wei X, Zhao M, Qiu B, Guo L, Lin Z, Yang HH. Ultraselective homogeneous electrochemical biosensor for DNA species related to oral cancer based on nicking endonuclease assisted target recycling amplification. Anal Chem. 2015;87:9204–8.

    Article  PubMed  Google Scholar 

  45. Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, Mercier PP, Wang J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron. 2015;74:1061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim J, Valdés-Ramírez G, Bandodkar AJ, Jia W, Martinez AG, Ramírez J et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst. 2014;139:1632–6.

    Google Scholar 

  47. Liang YH, Chang CC, Chen CC, Chu-Su Y, Lin CW. Development of an au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva. Clin Biochem. 2012;45:1689–93.

    Article  PubMed  Google Scholar 

  48. Munge BS, Krause CE, Malhotra R, Patel V, Silvio Gutkind J, Rusling JF. Electrochemical Immunosensors for Interleukin-6.Comparison of carbon nanotube Forest and gold nanoparticle platforms. Electrochem Commun. 2009;11:1009–12.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang Y, Chen R, Xu L, Ning Y, Xie S, Zhang GJ. Silicon nanowire biosensor for highly sensitive and multiplexed detection of oral squamous cell carcinoma biomarkers in saliva. Anal Sci. 2015;31:73–8.

    Article  PubMed  Google Scholar 

  50. Kwon SM, Kang GB, Kim YT, Kim YH, Ju BK. In-situ detection of C-reactive protein using silicon nanowire field effect transistor. JNanosci Nanotechnol. 2011;11:1511–4.

    Article  Google Scholar 

  51. Wang HB, Wu S, Chu X, Yu RQ. A sensitive fluorescence strategy for telomerase detection in cancer cells based on T7 exonuclease-assisted target recycling amplification. Chem Commun (Camb). 2012;48:5916–8.

    Article  Google Scholar 

  52. Liu X, Li W, Hou T, Dong S, Yu G, Li F. Homogeneous electrochemical strategy for human telomerase activity assay at single-cell level based on T7 exonuclease-aided target recycling amplification. Anal Chem. 2015;87:4030–6.

    Article  PubMed  Google Scholar 

  53. Hayakawa M, Kodama M, Sato S, Tomoeda-Mori K, Haraguchi K, Habu M, et al. Electrochemical telomeraseassay for screening for oral cancer. Br J Oral Maxillofac Surg. 2016; 54:301-5.

    Google Scholar 

  54. Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32.

    Google Scholar 

  55. Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials (Basel). 2011;1:31–63.

    Article  Google Scholar 

  56. Huang X, O'Connor R, Kwizera EA. Gold nanoparticle based platforms for circulating Cancer marker detection. Nano. 2017;1:80–102.

    Google Scholar 

  57. Kah JC, Kho KW, Lee CG, James C, Sheppard R, Shen ZX et al. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2007; 2: 785–798.

    Google Scholar 

  58. Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res. 2011; 71: 1526–1532.

    Google Scholar 

  59. Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF. Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron. 2011;26:4477–83.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Singh SP, Deshmukh A, Chaturvedi P, Murali KC. In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa. J Biomed Opt. 2012;17:105002.

    PubMed  Google Scholar 

  61. Xue L, Li Y, Cai Q, Sun P, Luo X, Yan B. Ramanspectral characteristics of oralsquamous cell carcinoma, epithelial dysplasia and normal mucosa. Zhonghua Kou Qiang Yi Xue Za Zhi. 2015;50:18–22.

    PubMed  Google Scholar 

  62. Li XZ, Bai J, Lin J, et al. Serum fluorescence and Raman spectra for diagnosis of cancer. Proc SPIE. 2001;4432:124–30.

    Article  Google Scholar 

  63. Sahu A, Sawant S, Mamgain H, Krishna CM. Raman spectroscopy of serum: an exploratory study for detection of oral cancers. Analyst. 2013;138:4161–74.

    Article  PubMed  Google Scholar 

  64. Singh SP, Sahu A, Deshmukh A, Chaturvedi P, Krishna CM. In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated changes (MAC)/cancer field effects (CFE). Analyst. 2013;138:4175–82.

    Article  PubMed  Google Scholar 

  65. Tan Y, Yan B, Xue L, Li Y, Luo X, Ji P. Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oralsquamous cell carcinoma. Lipids Health Dis. 2017;16:73.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yan B, Li B, Wen Z, Luo X, Xue L, Li L. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors. BMC Cancer. 2015;15:650.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tu Q, Chang C. Diagnostic applications of Raman spectroscopy. Nanomedicine. 2012;8:545–58.

    Article  PubMed  Google Scholar 

  68. Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31:249–57.

    Article  PubMed  Google Scholar 

  69. Nolan JP, Duggan E, Liu E, Condello D, Dave I, Stoner SA. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods. 2012;57:272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.

    Article  Google Scholar 

  71. Owens P, Phillipson N, Perumal J, O'Connor GM, Olivo M. Sensing of p53 and EGFR biomarkers using high efficiency SERS substrates. Biosensors (Basel). 2015;5:664–77.

    Article  Google Scholar 

  72. Lin D, Pan J, Huang H, Chen G, Qiu S, Shi H, et al. Label-free blood plasma test based on surface-enhanced Raman scattering for tumor stages detection in nasopharyngeal cancer. Sci Rep. 2014; 4:4751.

    Google Scholar 

  73. Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, et al. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron. 2010;25:2414–9.

    Article  PubMed  Google Scholar 

  74. Gong T, Kong KV, Goh D, Olivo M, Yong K-T. Sensitive surface enhanced Raman scattering multiplexed detection of matrix metalloproteinase 2 and 7 cancer markers. Biomed Opt Express. 2015;6:2076–87.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Head SR, Kiyomi Komori H, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR. Library construction for next-generation sequencing: Overviews and challenges. Biotechniques. 2014;56:61.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Wen ZN, Li LJ, Li ML, Gao N, Guo YZ. Research on the Raman spectral character and diagnostic value of squamous cell carcinoma of oral mucosa. J Raman Spectrosc. 2010;41:142–7.

    Google Scholar 

  77. Stahelin RV. Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Mol Biol Cell. 2013;24:883–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. El-Sayed IH. Nanotechnology in head and neckcancer: the race is on. Curr Oncol Rep. 2010;12:121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Poser E, Genovese I, Masciarelli S, Bellissimo T, Fazi F, Colotti G. Surface Plasmon resonance: a useful strategy for the identification of small molecule Argonaute 2 protein binders. Methods Mol Biol. 2017;1517:223–37.

    Article  PubMed  Google Scholar 

  80. Piliarik M, Vaisocherová H, Homola J. Surface plasmon resonance biosensing. Methods Mol Biol. 2009;503:65–88.

    Article  PubMed  Google Scholar 

  81. Drescher DG, Ramakrishnan NA, Drescher MJ. Surface Plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia. Methods Mol Biol. 2009;493:323–43.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dudak FC, Boyaci IH. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol J. 2009;4:1003–11.

    Article  PubMed  Google Scholar 

  83. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yakob M, Fuentes L, Wang MB, Abemayor E, Wong DTW. Salivary biomarkers for detection of oral squamous cell carcinoma – current state and recent advances. Curr Oral Health Rep. 2014;1:133–41.

    Article  PubMed  PubMed Central  Google Scholar 

  85. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5:829–34.

    Article  PubMed  Google Scholar 

  86. Maiolo D, Paolini L, Di Noto G, Zendrini A, Berti D, Bergese P, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015;87:4168–76.

    Article  PubMed  Google Scholar 

  87. Xie X, Xu W, Liu X. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc Chem Res. 2012;45:1511–20.

    Article  PubMed  Google Scholar 

  88. Cordeiro M, Ferreira Carlos F, Pedrosa P, Lopez A, Baptista PV. Gold Nanoparticles for Diagnostics: Advances towards Points of Care. Diagnostics (Basel).2016;6(4).pii: E43.

    Google Scholar 

  89. Chen P, Selegård R, Aili D, Liedberg B. Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale. 2013;5:8973–6.

    Article  PubMed  Google Scholar 

  90. Zhang Y, McKelvie ID, Cattrall RW, Kolev SD. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: merits, inherent shortcomings and future prospects. Talanta. 2016;152:410–22.

    Article  PubMed  Google Scholar 

  91. Latorre A, Posch C, Garcimartín Y, Ortiz-Urda S, Somoza Á. Single-point mutation detection in RNA extracts using gold nanoparticles modified with hydrophobic molecular beacon-like structures. Chem Commun (Camb). 2014;50:3018–20.

    Article  Google Scholar 

  92. Sun L, Zhang Z, Wang S, Zhang J, Li H, Ren L, et al. Effect of pH on the interaction of gold nanoparticles with DNA and application in the detection of human p53 gene mutation. Nanoscale Res Lett. 2008;4:216–20.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.

    Article  PubMed  Google Scholar 

  94. Laromaine A, Koh L, Murugesan M, Ulijn RV, Stevens MM. Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc. 2007;129:4156–7.

    Article  PubMed  Google Scholar 

  95. Maher RC, Maier SA, Cohen LF, Koh L, Laromaine A, Dick JAG, Stevens MM. Exploiting SERS hot spots for disease-specific enzyme detection. J Phys Chem C. 2010;114:7231–5.

    Google Scholar 

  96. Andrew St. John, Christopher P Price. Existing and emerging technologies for point-of-care testing. Clin Biochem Rev. 2014;35:155–67.

    Google Scholar 

  97. St John MA, Li Y, Zhou X, Denny P, Ho CM, Montemagno C, et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130:929–35.

    Article  PubMed  Google Scholar 

  98. de Jong EP, Xie H, Onsongo G, Stone MD, Chen XB, Kooren JA, et al. Quantitative proteomics reveals myosin and actin as promising saliva biomarkers for distinguishing pre-malignant and malignant oral lesions. PLoS One. 2010;5:e11148.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li Y, St John MA, Zhou X, Kim Y, Sinha U, Jordan RC, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 2004;10:8442–50.

    Article  PubMed  Google Scholar 

  100. Elashoff D, Zhou H, Reiss J, Wang J, Henson B, Shen H, et al. Pre-validation of salivary biomarkers for oral Cancer detection. Cancer Epidemiol Biomark Prev. 2012;21:664–72.

    Article  Google Scholar 

  101. Yamazaki K, Nakajima T, Gemmell E, Polak B, Seymour GJ, Hara K. IL-4- and IL-6-producing cells in human periodontal disease tissue. J Oral Pathol Med. 1994;23:347–53.

    Article  PubMed  Google Scholar 

  102. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000;287:2017–9.

    Article  PubMed  Google Scholar 

  103. Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26:781–91.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Stuani VT, Rubira CM, Sant'Ana AC, Santos PS. Salivary biomarkers as tools for oral squamous cell carcinoma diagnosis: a systematic review. Head Neck. 2017;39:797–811.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Support from Ronnie James Dio Stand Up and Shout Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanth Panta MDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panta, P., Wong, D.T.W. (2019). Saliva-Based Point-of-Care in Oral Cancer Detection: Current Trend and Future Opportunities. In: Panta, P. (eds) Oral Cancer Detection. Springer, Cham. https://doi.org/10.1007/978-3-319-61255-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61255-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61254-6

  • Online ISBN: 978-3-319-61255-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics