Skip to main content

Automated Polyp Segmentation in Colonoscopy Frames Using Fully Convolutional Neural Network and Textons

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

Abstract

In this paper, we presented a novel hybrid classification based method for fully automated polyp segmentation in colonoscopy video frames. It contains two main steps: initial region proposals generation and regions refinement. Both machine learned features and hand crafted features are taken into account for polyp segmentation. More specifically, the hierarchical features of polyps are learned by fully convolutional neural network (FCN), while the context information related to the polyp boundaries is modeled by texton patch representation. The FCN provides pixel-wise prediction and initial polyp region candidates. Those candidates are further refined by patch-wise classification using texton based spatial features and a random forest classifier. The segmentation results are evaluated on a publicly available CVC-ColonDB database. On average, our method achieves 97.54% of accuracy, 75.66% of sensitivity, 98.81% of specificity and DICE of 0.70%. The fast execution time (0.16 s/frame) demonstrates the promise of our method to be used in real-time clinical colonoscopic examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winawer, S.J., Zauber, A.G., Ho, M.N., Obrien, M.J., Gottlieb, L.S., Sternberg, S.S., Waye, J.D., Schapiro, M., Bond, J.H., Panish, J.F., Ackroyd, F., Shike, M., Kurtz, R.C., Hornsbylewis, L., Gerdes, H., Stewart, E.T.: Prevention of colorectal-cancer by colonoscopic polypectomy. New Engl. J. Med. 329, 1977–1981 (1993)

    Article  Google Scholar 

  2. Lieberman, D.: Quality and colonoscopy: a new imperative. Gastrointest. Endosc. 61, 392–394 (2005)

    Article  Google Scholar 

  3. Tajbakhsh, N., Gurudu, S.R., Liang, J.: A classification-enhanced vote accumulation scheme for detecting colonic polyps. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds.) ABD-MICCAI 2013. LNCS, vol. 8198, pp. 53–62. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41083-3_7

    Chapter  Google Scholar 

  4. Hwang, S., Oh, J., Tavanapong, W., Wong, J., de Groen, P.C.: Polyp detection in colonoscopy video using elliptical shape feature. In: IEEE International Conference on Image Processing, pp. 1029–1032 (2007)

    Google Scholar 

  5. Bernal, J., Sanchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45, 3166–3182 (2012)

    Article  Google Scholar 

  6. Li, P., Chan, K.L., Krishnan, S.M.: Learning a multi-size patch-based hybrid kernel machine ensemble for abnormal region detection in colonoscopic images. In: Proceedings of CVPR, pp. 670–675. IEEE (2005)

    Google Scholar 

  7. Park, S.Y., Sargent, D., Spofford, I., Vosburgh, K.G., A-Rahim, Y.: A colon video analysis framework for polyp detection. IEEE Trans. Bio-Med. Eng. 59, 1408–1418 (2012)

    Article  Google Scholar 

  8. Bae, S.H., Yoon, K.J.: Polyp detection via imbalanced learning and discriminative feature learning. IEEE Trans. Bio-Med. Imaging 34, 2379–2393 (2015)

    Article  Google Scholar 

  9. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automatic polyp detection using global geometric constraints and local intensity variation patterns. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 179–187. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_23

    Google Scholar 

  10. Tajbakhsh, N., Gurudu, S.R., Liang, J.M.: Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks. In: International symposium on Biomed Imaging, pp. 79–83 (2015)

    Google Scholar 

  11. Tajbakhsh, N., Gurudu, S.R., Liang, J.M.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35, 630–644 (2016)

    Article  Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  13. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  15. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Ieee International Symposium on Circuits and systems, pp. 253–256 (2010)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: CORR abs/1409.1556 (2014)

    Google Scholar 

  17. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Jianming, L.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016)

    Article  Google Scholar 

  18. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  20. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62, 61–81 (2005)

    Article  Google Scholar 

  21. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43, 29–44 (2001)

    Article  MATH  Google Scholar 

  22. Daugman, J.G.: Uncertainty relation for resolution in space, spatial-frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. 2, 1160–1169 (1985)

    Article  Google Scholar 

  23. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  24. Vedaldi, A., Lenc, K.: MatConvNet convolutional neural networks for MATLAB. In: MM 2015: Proceedings of the 2015 Acm Multimedia Conference, pp. 689–692 (2015)

    Google Scholar 

Download references

Acknowledgment

This research was supported by Cancer Research UK (CRUK) funded project “Bowels - inside out” (A22873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, L., Dolwani, S., Ye, X. (2017). Automated Polyp Segmentation in Colonoscopy Frames Using Fully Convolutional Neural Network and Textons. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics