Skip to main content

An Emerging Framework to Inform Effective Design of Human-Machine Interfaces for Older Adults Using Connected Autonomous Vehicles

  • Conference paper
  • First Online:
Advances in Human Aspects of Transportation (AHFE 2017)

Abstract

Connected autonomous vehicles (CAVs) represent an exciting opportunity for wider access to mobility; especially for individuals unable to drive manual vehicles. Interaction with CAVs will be through human-machine interfaces (HMIs) providing journey-related and other information with some interactivity. These should be designed with potential users as part of a co-design process to maximize acceptance, engagement, and trust. This paper presents an emerging framework to inform the design of in-vehicle CAV HMIs with a focus on older adults (70-years+). These could be amongst early adopters of CAVs and tend to have the highest level of cognitive, sensory, and physical impairments. Whilst there are numerous principles on HMI design for older adults there are fewer on HMIs for AVs, and a need for research on CAV HMI design principles for older adults. Our emerging framework is novel and important for designers of CAV HMIs for older adults and other potential users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SAE International.: U.S. Department of transportation’s new policy on automated vehicles adopts SAE International’s levels of automation for defining driving automation in on-road motor vehicles, (2016) https://www.sae.org/news/3544

  2. Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley, New York (1987)

    Google Scholar 

  3. Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)

    MATH  Google Scholar 

  4. Wickens, C.D., Lee, J., Liu, Y., Becker, S.G.: An Introduction to Human Factors Engineering. Pearson, Hoboken, NJ (2004)

    Google Scholar 

  5. Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers think. Commun. ACM 28(3), 300–311 (1985)

    Article  Google Scholar 

  6. Heckel, P.: The Elements of Friendly Software Design. Warner Books, Anaheim, CA (1984)

    Google Scholar 

  7. Mayhew, D.J.: Principles and Guidelines in Software User Interface Design. Prentice-Hall, London (1991)

    Google Scholar 

  8. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 5th edn. Addison-Wesley Publishers, Boston (2010)

    Google Scholar 

  9. Walker, G., Stanton, N., Salmon, P.: Human Factors in Automotive Engineering and Design. Human Factors in Transport Series. Ashgate Publishing Ltd, Farnham (2015)

    Google Scholar 

  10. Weir, D.H.: Application of a driving simulator to the development of in-vehicle human–machine-interfaces. IATSS Res. 34(1), 16–21 (2010)

    Article  Google Scholar 

  11. Häuslschmid, R., Bengler, K., Olaverri-Monreal, C.: Graphic toolkit for adaptive layouts in in-vehicle user interfaces. In: Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp, 292–298 (2013)

    Google Scholar 

  12. Lorenz, L., Kerschbaum, P., Schumann, J.: Designing take over scenarios for automated driving: how does augmented reality support the driver to get back into the loop? In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1681–1685. Sage Publications, Los Angeles (2014)

    Google Scholar 

  13. Cuevas, H.M.: An illustrative example of four HCI design approaches for evaluating an automated system interface. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 892–896. Sage Publications (2004)

    Google Scholar 

  14. Jämsä, J., Kaartinen, H.: Adaptive user interface for assisting the drivers’ decision making. In: 6th IEEE International Conference on Cognitive Info communications (CogInfoCom), pp. 17–18 (2015)

    Google Scholar 

  15. Baxter, G., Besnard, D., Riley, D.: Cognitive mismatches in the cockpit: will they ever be a thing of the past? Appl. Ergon. 38(4), 417–423 (2007)

    Article  Google Scholar 

  16. Seppelt, B.D., Lee, J.D.: Making adaptive cruise control (ACC) limits visible. Int. J. Hum. Comput. Stud. 65(3), 192–205 (2007)

    Article  Google Scholar 

  17. Stanton, N.A., Dunoyer, A., Leatherland, A.: Detection of new in-path targets by drivers using stop & go adaptive cruise control. Appl. Ergon. 42(4), 592–601 (2011)

    Article  Google Scholar 

  18. Deary, I.J., Corley, J., Gow, A.J., Harris, S.E., Houlihan, L.M., Marioni, R.E., Penke, L., Rafnsson, S.B., Starr, J.M.: Age-associated cognitive decline. Br. Med. Bull. 92(1), 135–152 (2009)

    Article  Google Scholar 

  19. Freedman, V.A., Martin, L.G., Schoeni, R.F.: Recent trends in disability and functioning among older adults in the united states: a systematic review. JAMA 288(24), 3137–3146 (2002)

    Article  Google Scholar 

  20. Charness, N., Boot, W.R.: Aging and information technology use potential and barriers. Curr. Dir. Psychol. Sci. 18(5), 253–258 (2009)

    Article  Google Scholar 

  21. Fisk, A.D., Rogers, W.A., Charness, N., Czaja, S.J., Sharit, J.: Designing for Older Adults: Principles and Creative Human Factors Approaches. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  22. Czaja, S.J., Lee, C.C.: Information Technology and Older Adults. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  23. Farage, M.A., Miller, K.W., Ajayi, F., Hutchins, D.: Design principles to accommodate older adults. Glob. J. Health Sci. 4(2), 2 (2012)

    Google Scholar 

  24. Baddeley, A.: Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29 (2012)

    Article  Google Scholar 

  25. Mulvenna, M., Carswell, W., McCullagh, P., Augusto, J.C., Zheng, H., Jeffers, P., Wang, H., Martin, S.: Visualization of data for ambient assisted living services. IEEE Commun. Mag. 49(1), 110–117 (2011)

    Article  Google Scholar 

  26. Glisky, E.L.: Changes in cognitive function in human aging. In: Riddle, D.R. (ed.) Brain Aging: Models, Methods, and Mechanisms, pp. 3–20. CRC Press, Boca Raton (2007)

    Chapter  Google Scholar 

  27. Spencer, W.D., Raz, N.: Differential effects of aging on memory for content and context: a meta-analysis. Psychol. Aging 10(4), 527 (1995)

    Article  Google Scholar 

  28. Baddeley, A., Eysenck, M.W., Anderson, M.C.: Memory, 2nd edn. Psychology Press, Sussex (2015)

    Google Scholar 

  29. Dickinson, A., Arnott, J., Prior, S.: Methods for human–computer interaction research with older people. Behav. Inf. Technol. 26(4), 343–352 (2007)

    Article  Google Scholar 

  30. Lee, H.K., Scudds, R.J.: Comparison of balance in older people with and without visual impairment. Age Ageing 32(6), 643–649 (2003)

    Article  Google Scholar 

  31. West, S.K., Munoz, B., Rubin, G.S., Schein, O.D., Bandeen-Roche, K., Zeger, S., German, S., Fried, L.P.: Function and visual impairment in a population-based study of older adults. The SEE project. Invest. Ophthalmol. Vis. Sci. 38(1), 72–82 (1997)

    Google Scholar 

  32. Echt, K. V., Morrell, R.: Designing web-based health information for older adults: visual considerations and design directives. In: Older adults, health information, and the World Wide Web. pp. 61–87 (2002)

    Google Scholar 

  33. Morrell, R. W., Echt, K. V.: Designing written instructions for older adults: learning to use computers. In: Handbook of Human Factors and the Older Adult, pp. 335–361 (1997)

    Google Scholar 

  34. Rubin, G.S., Roche, K.B., Prasada-Rao, P., Fried, L.P.: Visual impairment and disability in older adults. Optom. Vis. Sci. 71(12), 750–760 (1994)

    Article  Google Scholar 

  35. Watson, D.G., Maylor, E.A.: Aging and visual marking: selective deficits for moving stimuli. Psychol. Aging 17(2), 321 (2002)

    Article  Google Scholar 

  36. Gordon-Salant, S.: Hearing loss and aging: New research findings and clinical implications. J. Rehabil. Res. Dev. 42(4), 9 (2005)

    Article  Google Scholar 

  37. Pak, R., McLaughlin, A.: Designing Displays for Older Adults. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  38. Strawbridge, W.J., Wallhagen, M.I., Shema, S.J., Kaplan, G.A.: Negative consequences of hearing impairment in old age a longitudinal analysis. Gerontologist 40(3), 320–326 (2000)

    Article  Google Scholar 

  39. Zajicek, M., Morrissey, W.: Speech output for older visually impaired adults. In: People and Computers XV—Interaction Without Frontiers, pp. 503–513. Springer, London (2001)

    Chapter  Google Scholar 

  40. Aslan, U.B., Cavlak, U., Yagci, N., Akdag, B.: Balance performance, aging and falling: A comparative study based on a Turkish sample. Arch. Gerontol. Geriatr. 46(3), 283–292 (2008)

    Article  Google Scholar 

  41. Darejeh, A., Singh, D.: A review on user interface design principles to increase software usability for users with less computer literacy. J. Comput. Sci. 9(11), 1443 (2013)

    Article  Google Scholar 

  42. Dieudonné, V., Mahieu, P., Machgeels, C.: INPH, a navigation interface for motor-disabled persons. In: Proceedings of the 15th Conference on l’Interaction Homme-Machine, pp. 202–205 (2003)

    Google Scholar 

  43. Page, T.: Touchscreen mobile devices and older adults: a usability study. Int. J. Hum. Factors Ergon. 3(1), 65–85 (2014)

    Article  MathSciNet  Google Scholar 

  44. Fink, J., Kobsa, A., Nill, A.: Adaptable and adaptive information provision for all users, including disabled and elderly people. New Rev. Hypermedia Multimed. 4(1), 163–188 (1998)

    Article  Google Scholar 

  45. Eisses, S.: ITS Action Plan. RappTrans. European commission D4 Final Report (2011)

    Google Scholar 

  46. Emmerson, C., Guo, W., Blythe, P., Namdeo, A., Edwards, S.: Fork in the road: in-vehicle navigation systems and older drivers. Transp. Res. Part F 21, 173–180 (2013)

    Article  Google Scholar 

  47. May, A., Ross, T., Osman, Z.: The design of next generation in-vehicle navigation systems for the older driver. Interact. Comput. 17(6), 643–659 (2005)

    Article  Google Scholar 

  48. Pauzie, A.: Development of ergonomic mock-ups for usability testing of in-vehicle communicating systems. Hum.-Comput. Interact. 2, 228 (2003)

    Google Scholar 

  49. Arnaout, G.M., Bowling, S.: A progressive deployment strategy for cooperative adaptive cruise control to improve traffic dynamics. Int. J. Autom. Comput. 11(1), 10–18 (2014)

    Article  Google Scholar 

  50. Bekiaris, E., Panou, M., Touliou, K.: HMI for elderly and disabled drivers to get safely real-time warnings and information while driving. In: The 13th World Conference on Transport Research (2013)

    Google Scholar 

  51. Iulian, D.A., Leonte, M.G.: Driver warning assistant for monitoring heart rate and SpO2 using mobile phones. Appl. Mech. Mater. 656, 395–402 (2014)

    Article  Google Scholar 

  52. McMellon, C.A., Schiffman, L.G.: Cybersenior empowerment: how some older individuals are taking control of their lives. J. Appl. Gerontol. 21(2), 157–175 (2002)

    Article  Google Scholar 

  53. Reimer, B.: Driver assistance systems and the transition to automated vehicles: a path to increase older adult safety and mobility? Public Policy Aging Rep. 24(1), 27–31 (2014)

    Article  MathSciNet  Google Scholar 

  54. Alvarez-Cortes, V., Zayas-Perez, B. E., Zarate-Silva, V. H., Uresti, J. A. R.: Current trends in adaptive user interfaces: challenges and applications. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 312–317 (2007)

    Google Scholar 

  55. Gonzalez-Rodriguez, M., Manrubia, J., Vidau, A., Gonzalez-Gallego, M.: Improving accessibility with user-tailored interfaces. Appl. Intell. 30(1), 65–71 (2009)

    Article  Google Scholar 

  56. Kurschl, W., Augstein, M., Burger, T., Pointner, C.: User modeling for people with special needs. Int. J. Pervasive Comput. Commun. 10(3), 313–336 (2014)

    Article  Google Scholar 

  57. Lavie, T., Meyer, J.: Benefits and costs of adaptive user interfaces. Int. J. Hum Comput Stud. 68(8), 508–524 (2010)

    Article  Google Scholar 

  58. Chung, M.K., Lee, D., Jeong, C.: The effects of zoomable user interfaces and user age in searching for a target with a mouse on a two-dimensional information space. Int. J. Ind. Ergon. 41(2), 191–199 (2011)

    Article  Google Scholar 

  59. Ferreira, F., Almeida, N., Rosa, A.F., Oliveira, A., Casimiro, J., Silva, S., Teixeira, A.: Elderly centered design for interaction–the case of the S4S medication assistant. Proced. Comput. Sci. 27, 398–408 (2014)

    Article  Google Scholar 

  60. Hanson, V. L.: The user experience: designs and adaptations. In: Proceedings of the 2004 International Cross-Disciplinary Workshop on Web Accessibility (W4A), pp. 1–11. ACM 7 (2004)

    Google Scholar 

  61. Mejía, A., Juárez-Ramírez, R., Inzunza, S., Valenzuela, R.: Implementing adaptive interfaces: a user model for the development of usability in interactive systems. In: Proceedings of the CUBE International Information Technology Conference, pp. 598–604 (2012)

    Google Scholar 

  62. Rice, M., Alm, N.: Designing new interfaces for digital interactive television usable by older adults. Comput. Entertain. (CIE). 6(1), 6 (2008)

    Google Scholar 

  63. Verwey, W.B.: On-line driver workload estimation: Effects of road situation and age on secondary task measures. Ergonomics 43(2), 187–209 (2000)

    Article  Google Scholar 

  64. Browne, D., Norman, M., Riches, D.: Why build adaptive systems? In: Brown, D., Totterdell, P., Norman, M. (eds.) Adaptive User Interfaces, pp. 15–58. Elsevier, London (2016)

    Google Scholar 

  65. Heimgärtner, R.: Cultural differences in human computer interaction: results from two online surveys. In: ISI, pp. 145–157 (2007)

    Google Scholar 

Download references

Acknowledgments

The reported research forms part of an Innovate UK research project - FLOURISH: Empowerment through Trusted Secure Mobility (2016–2019). See http://flourishmobility.com/. We thank Tracey Poole (Atkins UK) for reading an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip L. Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Morgan, P.L. et al. (2018). An Emerging Framework to Inform Effective Design of Human-Machine Interfaces for Older Adults Using Connected Autonomous Vehicles. In: Stanton, N. (eds) Advances in Human Aspects of Transportation. AHFE 2017. Advances in Intelligent Systems and Computing, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-319-60441-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60441-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60440-4

  • Online ISBN: 978-3-319-60441-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics