Skip to main content

Relaxation Methods for Constrained Matrix Factorization Problems: Solving the Phase Mapping Problem in Materials Discovery

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10335))

Abstract

Matrix factorization is a robust and widely adopted technique in data science, in which a given matrix is decomposed as the product of low rank matrices. We study a challenging constrained matrix factorization problem in materials discovery, the so-called phase mapping problem. We introduce a novel “lazy” Iterative Agile Factor Decomposition (IAFD) approach that relaxes and postpones non-convex constraint sets (the lazy constraints), iteratively enforcing them when violations are detected. IAFD interleaves multiplicative gradient-based updates with efficient modular algorithms that detect and repair constraint violations, while still ensuring fast run times. Experimental results show that IAFD is several orders of magnitude faster and its solutions are also in general considerably better than previous approaches. IAFD solves a key problem in materials discovery while also paving the way towards tackling constrained matrix factorization problems in general, with broader implications for data science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atkins, P., De Paula, J.: Atkins’ Physical Chemistry, p. 77. Oxford University Press, New York (2006)

    Google Scholar 

  2. Ermon, S., Bras, R.L., Suram, S.K., Gregoire, J.M., Gomes, C., Selman, B., Van Dover, R.B.: Pattern decomposition with complex combinatorial constraints: application to materials discovery. arXiv preprint arXiv:1411.7441 (2014)

  3. Ermon, S., Bras, R., Gomes, C.P., Selman, B., Dover, R.B.: SMT-aided combinatorial materials discovery. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 172–185. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_14

    Chapter  Google Scholar 

  4. Le Bras, R., Bernstein, R., Suram, S.K., Gregoire, J.M., Selman, B., Gomes, C.P., van Dover, R.B.: A computational challenge problem in materials discovery: synthetic problem generator and real-world datasets (2014)

    Google Scholar 

  5. LeBras, R., Damoulas, T., Gregoire, J.M., Sabharwal, A., Gomes, C.P., Dover, R.B.: Constraint reasoning and kernel clustering for pattern decomposition with scaling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 508–522. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_39

    Chapter  Google Scholar 

  6. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  7. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Long, C., Bunker, D., Li, X., Karen, V., Takeuchi, I.: Rapid identification of structural phases in combinatorial thin-film libraries using X-ray diffraction and non-negative matrix factorization. Rev. Sci. Instrum. 80(10), 103902 (2009)

    Article  Google Scholar 

  9. Long, C., Hattrick-Simpers, J., Murakami, M., Srivastava, R., Takeuchi, I., Karen, V.L., Li, X.: Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev. Sci. Instrum. 78(7), 072217 (2007)

    Article  Google Scholar 

  10. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 792–799. ACM (2005)

    Google Scholar 

  11. Smaragdis, P.: Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs. In: Puntonet, C.G., Prieto, A. (eds.) ICA 2004. LNCS, vol. 3195, pp. 494–499. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30110-3_63

    Chapter  Google Scholar 

  12. Suram, S.K., Xue, Y., Bai, J., Bras, R.L., Rappazzo, B., Bernstein, R., Bjorck, J., Zhou, L., van Dover, R.B., Gomes, C.P., et al.: Automated phase mapping with agilefd and its application to light absorber discovery in the V-Mn-Nb oxide system. arXiv preprint arXiv:1610.02005 (2016)

  13. Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Longpre, L., Suram, S., van Dover, B., Gregoire, J., Gomes, C.: Phase mapper: an AI platform to accelerate high throughput materials discovery. In: Twenty-Ninth International Conference on Innovative Applications of Artificial Intelligence (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Ronan Le Bras and Rich Bernstein for fruitful discussion. This material is supported by NSF awards CCF-1522054, CNS-0832782, CNS-1059284, IIS-1344201 and W911-NF-14-1-0498. Experiments were supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Bjorck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bai, J., Bjorck, J., Xue, Y., Suram, S.K., Gregoire, J., Gomes, C. (2017). Relaxation Methods for Constrained Matrix Factorization Problems: Solving the Phase Mapping Problem in Materials Discovery. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics