Skip to main content

The Nemhauser-Trotter Reduction and Lifted Message Passing for the Weighted CSP

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2017)

Abstract

We study two important implications of the constraint composite graph (CCG) associated with the weighted constraint satisfaction problem (WCSP). First, we show that the Nemhauser-Trotter (NT) reduction popularly used for kernelization of the minimum weighted vertex cover (MWVC) problem can also be applied to the CCG of the WCSP. This leads to a polynomial-time preprocessing algorithm that fixes the optimal values of a large subset of the variables in the WCSP. Second, belief propagation (BP) is a well-known technique used for solving many combinatorial problems in probabilistic reasoning, artificial intelligence and information theory. The min-sum message passing (MSMP) algorithm is a simple variant of BP that has also been successfully employed in several research communities. Unfortunately, the MSMP algorithm has met with little success on the WCSP. We revive the MSMP algorithm for solving the WCSP by applying it on the CCG of a given WCSP instance instead of its original form. We refer to this new MSMP algorithm as the lifted MSMP algorithm for the WCSP. We demonstrate the effectiveness of our algorithms through experimental evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html.

  2. 2.

    http://genoweb.toulouse.inra.fr/~degivry/evalgm/.

  3. 3.

    As shown in [10], our techniques can also be generalized to the WCSP with larger domain sizes of the variables. However, for a proof of concept, this paper focuses on the Boolean WCSP.

  4. 4.

    We could have also implemented the NT reduction using a more efficient maxflow algorithm [4]; but once again, we focus only on the proof of concept in this paper.

References

  1. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison. Constraints 4(3), 199–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  4. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2016). http://www.gurobi.com

  6. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., de Givry, S.: Multi-language evaluation of exact solvers in graphical model discrete optimization. Constraints 21(3), 413–434 (2016)

    Article  MathSciNet  Google Scholar 

  7. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Kolmogorov, V.: Primal-dual algorithm for convex markov random fields. Technical report, MSR-TR-2005-117, Microsoft Research (2005)

    Google Scholar 

  9. Kumar, T.K.S.: A framework for hybrid tractability results in boolean weighted constraint satisfaction problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 282–297. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_19

    Chapter  Google Scholar 

  10. Kumar, T.K.S.: Lifting techniques for weighted constraint satisfaction problems. In: the International Symposium on Artificial Intelligence and Mathematics (2008)

    Google Scholar 

  11. Kumar, T.K.S.: Kernelization, generation of bounds, and the scope of incremental computation for weighted constraint satisfaction problems. In: The International Symposium on Artificial Intelligence and Mathematics (2016)

    Google Scholar 

  12. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, New York (2009)

    Book  MATH  Google Scholar 

  13. Mézard, M., Zecchina, R.: Random \(k\)-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66(5), 056126 (2002)

    Article  Google Scholar 

  14. Moallemi, C.C., Roy, B.V.: Convergence of min-sum message-passing for convex optimization. IEEE Trans. Inf. Theor. 56(4), 2041–2050 (2010)

    Article  MathSciNet  Google Scholar 

  15. Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction problems through belief propagation-guided decimation. In: The Annual Allerton Conference, pp. 352–359 (2007)

    Google Scholar 

  16. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Siek, J., Lee, L.Q., Lumsdain, A.: The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley, Boston (2002)

    Google Scholar 

  18. Weigt, M., Zhou, H.: Message passing for vertex covers. Phys. Rev. E 74(4), 046110 (2006)

    Article  MathSciNet  Google Scholar 

  19. Xu, H., Kumar, T.K.S., Koenig, S.: A new solver for the minimum weighted vertex cover problem. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 392–405. Springer, Cham (2016). doi:10.1007/978-3-319-33954-2_28

    Google Scholar 

  20. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. Exploring Artif. Intell. New Millennium 8, 236–239 (2003)

    Google Scholar 

  21. Zytnicki, M., Gaspin, C., Schiex, T.: DARN! A weighted constraint solver for RNA motif localization. Constraints 13(1), 91–109 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The research at the University of Southern California was supported by the National Science Foundation (NSF) under grant numbers 1409987 and 1319966. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies or the U.S. government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, H., Satish Kumar, T.K., Koenig, S. (2017). The Nemhauser-Trotter Reduction and Lifted Message Passing for the Weighted CSP. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017. Lecture Notes in Computer Science(), vol 10335. Springer, Cham. https://doi.org/10.1007/978-3-319-59776-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59776-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59775-1

  • Online ISBN: 978-3-319-59776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics