Skip to main content

Statistical Atlases for Electroanatomical Mapping of Cardiac Arrhythmias

  • Conference paper
  • First Online:
  • 1674 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

Abstract

Electroanatomical mapping is a mandatory time-consuming planning step in cardiac catheter ablation. In practice, interventional cardiologists target specific endocardial areas for mapping based on personal experience, general electrophysiology principles, and preoperative anatomical scans. Effective fusion of all available information towards a useful mapping strategy has not been standardised and achieving the optimal map within time and space constraints is challenging. In this paper, a novel framework for computing optimal endocardial mapping locations in patients with congenital heart disease (CHD) is proposed. The method is based on a statistical electroanatomical model (SEAM) which is instantiated from preoperative anatomy in order to achieve an initial prediction of the electrical map. Simultaneously, the anatomical areas with the highest frequency of mapping among the similar cases in the dataset are detected and a classifier is trained to filter these points based on the electroanatomical data. The framework was tested in an iterative process of adding mapping points to the SEAM and computing the instantiation error, with retrospective clinical data of 66 CHD cases available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12(3), 335–357 (2008)

    Article  Google Scholar 

  2. Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3D mesh processing system. In: ERCIM News, pp. 45–46

    Google Scholar 

  3. Constantinescu, M.A., Lee, S.L., Navkar, N.V., Yu, W., Al-Rawas, S., Abinahed, J., Zheng, G., Keegan, J., Al-Ansari, A., Jomaah, N., Landreau, P., Yang, G.Z.: Constrained statistical modelling of knee flexion from multi-pose magnetic resonance imaging. IEEE Trans. Med. Imaging 35(7), 1686–1695 (2016)

    Article  Google Scholar 

  4. Roy, K., Gomez-Pulido, F., Ernst, S.: Remote magnetic navigation for catheter ablation in patients with congenital heart disease: a review. J. Cardiovasc. Electrophysiol. 27(Suppl 1), S45–S56 (2016)

    Article  Google Scholar 

  5. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  6. El Yaman, M.M., Asirvatham, S.J., Kapa, S., Barrett, R.A., Packer, D.L., Porter, C.B.: Methods to access the surgically excluded cavotricuspid isthmus for complete ablation of typical atrial flutter in patients with congenital heart defects. Heart Rhythm 6(7), 949–956 (2009)

    Article  Google Scholar 

  7. Krueger, M.W., Seemann, G., Rhode, K., Keller, D.U., Schilling, C., Arujuna, A., Gill, J., O’Neill, M.D., Razavi, R., Doessel, O.: Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation. IEEE Trans. Med. Imaging 32(1), 73–84 (2013)

    Article  Google Scholar 

  8. Mansi, T., Voigt, I., Leonardi, B., Pennec, X., Durrleman, S., Sermesant, M., Delingette, H., Taylor, A.M., Boudjemline, Y., Pongiglione, G., Ayache, N.: A statistical model for quantification and prediction of cardiac remodelling: application to tetralogy of fallot. IEEE Trans. Med. Imaging 30(9), 1605–1616 (2011)

    Article  Google Scholar 

  9. Perperidis, D., Mohiaddin, R., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. Med. Image Comput. Comput. Assist. Interv. 8(Pt 2), 402–410 (2005)

    Google Scholar 

  10. Prakosa, A., Sermesant, M., Allain, P., Villain, N., Rinaldi, C.A., Rhode, K., Razavi, R., Delingette, H., Ayache, N.: Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences. IEEE Trans. Biomed. Eng. 61(2), 235–245 (2014)

    Article  Google Scholar 

  11. Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. IEEE Trans. Med. Imaging 32(10), 1890–1900 (2013)

    Article  Google Scholar 

  12. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  13. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)

    Article  Google Scholar 

  14. Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau, P., Peyrat, J.M., Wong, K., Relan, J., Rhode, K., Ginks, M., Lambiase, P., Delingette, H., Sorine, M., Rinaldi, C.A., Chapelle, D., Razavi, R., Ayache, N.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)

    Article  Google Scholar 

  15. Wilms, M., Ehrhardt, J., Handels, H.: A 4D statistical shape model for automated segmentation of lungs with large tumors. Med. Image Comput. Comput. Assist. Interv. 15(Pt 2), 347–354 (2012)

    Google Scholar 

  16. Zettinig, O., Mansi, T., Georgescu, B., Kayvanpour, E., Sedaghat-Hamedani, F., Amr, A., Haas, J., Steen, H., Meder, B., Katus, H., Navab, N., Kamen, A., Comaniciu, D.: Fast data-driven calibration of a cardiac electrophysiology model from images and ECG. Med. Image Comput. Comput. Assist. Interv. 16(Pt 1), 1–8 (2013)

    Google Scholar 

  17. Zhang, H., Wahle, A., Johnson, R.K., Scholz, T.D., Sonka, M.: 4-D cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans. Med. Imaging 29(2), 350–364 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Constantinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Constantinescu, M., Lee, SL., Ernst, S., Yang, GZ. (2017). Statistical Atlases for Electroanatomical Mapping of Cardiac Arrhythmias. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics