Skip to main content

Abstract

Sustainable cocoa production in Ghana would require a shift in fertilizer recommendations from general applications to site-specific recommendations of fertilizers that account for initial fertility status and actual nutrient needs of soils on which cocoa is grown. A soil fertility survey was conducted in the major cocoa regions of Ghana covering the major benchmark soils. Two hundred and twenty four plots were sampled and composite surface soils collected and analyzed for selected fertility characteristics. The results show that most of the cocoa soils have low inherent fertility characterized by low C, N and exchange capacity. All the cocoa soils sorb P, which may limit availability of P in the soil solution. The soils generally are acidic, and soils in Western region, especially the Ferralsols, show the most acidic reaction with substantially measurable exchangeable Al. The results suggest that these differential characteristics of the surveyed soils should be considered in formulating balanced site-specific fertilizer for cocoa in Ghana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Afrifa, A. A, Ofori-Fripong, K., Appiah, M. R., Acquaye, S., & Snoeck, D. (2006). Nitrogen, phosphorus and potassium budget under the cocoa ecosystem: Produce harvesting phase. In: Proceedings 15th international Cocoa research conference. San Jose, Costa-Rica.

    Google Scholar 

  • Ahenkorah, Y. (1969). A note on zinc deficiency in cacao (Theobroma Cacao L.) Ghana Journal of Agricultural Science, 2, 3–6.

    Google Scholar 

  • Anderson, J. M., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods. Wallingford: CAB International.

    Google Scholar 

  • Appiah, M. R., Ofori-Fripong, K., & Afrifa, A. A. (2000). Evaluation of fertilizer application on some peasant cocoa farms in Ghana. Ghana Journal of Agricultural Science, 33, 183–190.

    Article  Google Scholar 

  • Assomaning, E. J. A., & Kwakwa, R. S. (1967). Boron deficiency and pod malformations in (Theobroma cacao L.) Ghana Journal of Agricultural Science, 7, 126–129.

    Google Scholar 

  • Bache, B. W., & Williams, E. G. (1971). A phosphate sorption index for soils. Journal of Soil Science, 22, 289–301.

    Article  CAS  Google Scholar 

  • CRIG. (2008). Guide to use of fertilizer on Cocoa, Farmers Guide No. 6. Tafo: Cocoa Research Institute of Ghana.

    Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis, Part I (Vol. 9, 2nd ed., pp. 383–411). Madison: American Society of Agronomy.

    Google Scholar 

  • Gockowski, J., & Sonwa, D. (2010). Cocoa intensification scenarios and their predicted impact on CO2 emissions, biodiversity conservation, and rural livelihoods in the Guinean rainforest of West Africa. Environmental Management., 48, 307. doi:10.1007/s00267-010-9602-3.

    Article  PubMed  Google Scholar 

  • Jadin, P., & Snoeck, J. (1985). La méthode du diagnostic sol pour calculer les besoins en engrais des cacaoyers. Café Cacao Thé, 29(4), 255–272.

    Google Scholar 

  • Kuo, S. (1996). Phosphorus. In D. L. Sparks (Ed.), Methods of soil analysis-Part 3. Chemical methods, SSSA book Series No 5 (pp. 869–919). Madison: Soil Science Society of America.

    Google Scholar 

  • Lindsay, W. L., & Cox, F. R. (1985). Micronutrients in tropical food crop production. In P. L. G. E. Vlek (Ed.), Developments in plant and soil sciences (Vol. 14). Dordrecht: Springer.

    Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Google Scholar 

  • Rhoades, J. D. (1982). Cation exchange capacity. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, Part 2. Chemical and microbiological properties (pp. 149–157). Madison: American Society of Agronomy, Inc. Soil Science Society of America. Inc.

    Google Scholar 

  • SAS Institute Inc. (1999). SAS User’s guide: Statistics. Gary: SAS Institute Inc.

    Google Scholar 

  • Snoeck, D., Abekoe, M. K., Afrifa, A. A., & Appiah, M. R. (2006). The soil diagnostic method to compute fertilizer requirements in cocoa plantations. In: Proceedings international conference on soil science. Accra, 16–21 July 2006.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An experimentation of Degtjareff method for determining soil organic matter and a pro-posed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Dossa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dossa, E.L., Arthur, A., Dogbe, W., Mando, A., Afrifa, A.A., Acquaye, S. (2018). An Assessment of Inherent Chemical Properties of Soils for Balanced Fertilizer Recommendations for Cocoa in Ghana. In: Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J. (eds) Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-58789-9_18

Download citation

Publish with us

Policies and ethics