Skip to main content

Time Discrete Extrapolation in a Riemannian Space of Images

  • Conference paper
  • First Online:
Book cover Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

The Riemannian metamorphosis model introduced and analyzed in [7, 12] is taken into account to develop an image extrapolation tool in the space of images. To this end, the variational time discretization for the geodesic interpolation proposed in [2] is picked up to define a discrete exponential map. For a given weakly differentiable initial image and a sufficiently small initial image variation it is shown how to compute a discrete geodesic extrapolation path in the space of images. The resulting discrete paths are indeed local minimizers of the corresponding discrete path energy. A spatial Galerkin discretization with cubic splines on coarse meshes for image deformations and piecewise bilinear finite elements on fine meshes for image intensity functions is used to derive a fully practical algorithm. The method is applied to real images and image variations recorded with a digital camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    First painting by A. Kauffmann (public domain, see http://commons.wikimedia.org/wiki/File:AngelikaspsKauffmannsps-spsSelfspsPortraitsps-sps1784.jpg), second painting by R. Peale (GFDL, see http://en.wikipedia.org/wiki/File:MaryspsDenison.jpg).

References

  1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  2. Berkels, B., Effland, A., Rumpf, M.: Time discrete geodesic paths in the space of images. SIAM J. Imaging Sci. 8(3), 1457–1488 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Holm, D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. Q. Appl. Math. 67, 661–685 (2009)

    Article  MATH  Google Scholar 

  5. Klingenberg, W.P.A.: Riemannian Geometry. de Gruyter Studies in Mathematics, vol. 1, 2nd edn. Walter de Gruyter & Co., Berlin (1995)

    Book  MATH  Google Scholar 

  6. Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105(2), 111–127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41(1–2), 61–84 (2001)

    Article  MATH  Google Scholar 

  8. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  9. Rumpf, M., Wirth, B.: Variational time discretization of geodesic calculus. IMA J. Numer. Anal. 35(3), 1011–1046 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)

    Article  MathSciNet  Google Scholar 

  11. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5(2), 173–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vialard, F.-X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97, 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vialard, F.-X., Risser, L., Rueckert, D., Holm, D.D.: Diffeomorphic atlas estimation using geodesic shooting on volumetric images. Ann. BMVA 2012, 1–12 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Effland .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Here, we derive Eq. (9) from the system of Euler-Lagrange equations (6), (7) and (8). By using the transformation formula the energy \(\mathcal {W}^D\) can be rewritten as follows

$$\begin{aligned} \mathcal {W}^D[{u}_1,{u}_2,\phi _2]=\int _\varOmega |D\phi _2-{\mathbbm {1}}|^2+\gamma |\varDelta ^m\phi _2|^2+\frac{1}{\delta }\frac{({u}_2-{u}_1\circ \phi _2^{-1})^2}{\det (D\phi _2)\circ \phi _2^{-1}}{\,\mathrm {d}}x. \end{aligned}$$

Now we rewrite the Euler-Lagrange equation (8). To this end, we use that

$$\begin{aligned} \partial _{\phi _2}\phi _2^{-1}(\psi )=-((D\phi _2)^{-1}\psi )\circ \phi _2^{-1}, \end{aligned}$$

which follows by differentiating \((\phi _2+\epsilon \psi )\circ (\phi _2+\epsilon \psi )^{-1}={\mathbbm {1}}\) with respect to \(\epsilon \), and that \(\partial _A\det (A)(B)={{\mathrm{cof}}}(A):B\) for \(A\in GL(n)\) and \(B\in \mathbb {R}^{n,n}\) with \({{\mathrm{cof}}}A = (\det A)A^{-T}\). Thus, we obtain

$$\begin{aligned}&\int _\varOmega 2D\phi _2:D\psi +2\gamma \varDelta ^m\phi _2\cdot \varDelta ^m\psi +\frac{2}{\delta }({u}_2-{u}_1\circ \phi _2^{-1})\frac{(\nabla {u}_1\cdot (D\phi _2)^{-1}\psi )\circ \phi ^{-1}_2}{\det (D\phi _2)\circ \phi ^{-1}_2} \\&\qquad +\frac{({u}_2-{u}_1\circ \phi _2^{-1})^2}{\delta (\det D\phi _2)^2\circ \phi _2^{-1}}\left( {{\mathrm{cof}}}D\phi _2 \!:\! (D^2\phi _2(D\phi _2)^{-1}\psi )-{{\mathrm{cof}}}D\phi _2\!:\!D\psi \right) \circ \phi _2^{-1}{\,\mathrm {d}}x =0. \end{aligned}$$

A further application of the transformation formula with respect to \(\phi _2\) yields

$$\begin{aligned}&\int _\varOmega 2D\phi _2:D\psi +2\gamma \varDelta ^m\phi _2\cdot \varDelta ^m \psi + \frac{2}{\delta }({u}_2\circ \phi _2-{u}_1)\nabla {u}_1\cdot (D\phi _2)^{-1}\psi \nonumber \\&\qquad +\frac{1}{\delta }\frac{({u}_2\circ \phi _2-{u}_1)^2}{\det D\phi _2} \left( {{\mathrm{cof}}}D\phi _2 :(D^2\phi _2(D\phi _2)^{-1}\psi )-{{\mathrm{cof}}}D\phi _2 : D\psi \right) {\,\mathrm {d}}x=0. \end{aligned}$$
(13)

To remove the dependency of the function \({u}_2\) above, we employ the pointwise condition

$$\begin{aligned} {u}_2\circ \phi _2-{u}_1=\frac{{u}_1-{u}_0\circ \phi _1^{-1}}{\det (D\phi _1)\circ \phi _1^{-1}} \end{aligned}$$

for a.e. \(x\in \varOmega \), which directly follows from (6). Inserting this in (13) and using the integral transformation formula we achieve

$$\begin{aligned}&\int _\varOmega 2D\phi _2:D\psi +2\gamma \varDelta ^m\phi _2\cdot \varDelta ^m\psi +\frac{2}{\delta }({u}_1\circ \phi _1-{u}_0)(\nabla {u}_1\cdot (D\phi _2)^{-1}\psi )\circ \phi _1\\&\quad +\frac{1}{\delta }\frac{({u}_1\circ \phi _1-{u}_0)^2}{\det D\phi _1}\left( \frac{{{\mathrm{cof}}}D\phi _2:(D^2\phi _2(D\phi _2)^{-1}\psi )-{{\mathrm{cof}}}D\phi _2 : D\psi }{\det D\phi _2}\right) \circ \phi _1{\,\mathrm {d}}x=0. \end{aligned}$$

Here, we take into account the identity \({{\mathrm{cof}}}(A)=\det (A)A^{-T}\). Next, we consider the test function \(\zeta :=((D\phi _2)^{-1}\psi )\circ \phi _1\) in (7). To justify this, we need a regularity result for polyharmonic PDEs to show \(\zeta \in H^{2m}_0(\varOmega )\). Inserting \(\zeta \) into (7) we get

$$\begin{aligned}&-\int _\varOmega \frac{2}{\delta }({u}_1\circ \phi _1-{u}_0)(\nabla {u}_1\cdot (D\phi _2)^{-1}\psi )\circ \phi _1{\,\mathrm {d}}x \\&\quad =\int _\varOmega 2\gamma \varDelta ^m\phi _1\cdot \varDelta ^m(((D\phi _2)^{-1}\psi )\circ \phi _1)+2D\phi _1:D(((D\phi _2)^{-1}\psi )\circ \phi _1){\,\mathrm {d}}x. \end{aligned}$$

By adding this identity to the above equation we finally obtain (9).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Effland, A., Rumpf, M., Schäfer, F. (2017). Time Discrete Extrapolation in a Riemannian Space of Images. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics