Skip to main content

Charge Transport Mechanisms in Oligothiophene Molecular Junctions Studied by Electrical Conductance and Thermopower Measurements

  • Conference paper
  • First Online:
  • 903 Accesses

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

Understanding charge transport mechanism of single-molecule–metal–molecule junctions is important in the field of molecular electronics. Till now, most of the reported works focused on small molecules, where tunneling transport dominates the charge transport. As the length of the molecule increases, the charge transport is expected to show a transition from tunneling to hopping. In this work, we performed a comprehensive investigation on oligothiophene molecules. We have measured the temperature dependence of electrical conductance and thermopower of oligothiophene molecular junctions with molecular lengths ranging from 2.2 nm (5T-di-SCN) to 7 nm (17T-di-SCN) using the homebuilt scanning tunneling microscope. The conductance measurement results reveal that the dominant charge transport for oligothiophene changed from tunneling to hopping transport at molecular length of ca. 5 nm. In addition, the thermopower for all the oligothiophene molecules was found to be positive, indicating the transport of charge carrier through the highest occupied molecular orbital level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nitzan, A., Ratner, M.A.: Science 300, 1384 (2003)

    Article  CAS  Google Scholar 

  2. Aradhya, S.V., Venkataraman, L.: Nat. Nanotechnol. 8, 399 (2013)

    Article  CAS  Google Scholar 

  3. McCreery, R.L., Yan, H., Bergren, A.J.: Phys. Chem. Chem. Phys. 15, 1065 (2013)

    Article  CAS  Google Scholar 

  4. Sun, L., Diaz-Fernandez, Y.A., Gschneidtner, T.A., Westerlund, F., Lara-Avila, S., Moth-Poulsen, K.: Chem. Soc. Rev. 43, 7378 (2014)

    Article  CAS  Google Scholar 

  5. Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S., Tada, H.: Nano Lett. 8, 1237 (2008)

    Article  CAS  Google Scholar 

  6. Ie, Y., Endou, M., Lee, S.K., Yamada, R., Tada, H., Aso, Y.: Angew. Chem. Int. Ed. 50, 11980 (2011)

    Article  CAS  Google Scholar 

  7. Nakamura, T., Fujitsuka, M., Araki, Y., Ito, O., Ikemoto, J., Takimiya, K., Aso, Y., Otsubo, T.: Phys. Chem. B 108, 10700 (2004)

    Article  CAS  Google Scholar 

  8. Luo, L., Choi, S.H., Frisbie, C.D.: Chem. Mater. 23, 631 (2011)

    Article  CAS  Google Scholar 

  9. Mishra, A., Ma, C.Q., Bauerle, P.: Chem. Rev. 109, 1141 (2009)

    Article  CAS  Google Scholar 

  10. Leary, E., Hobenreich, H., Higgins, S.J., van Zalinge, H., Haiss, W., Nichols, R.J., Finch, C.M., Grace, I., Lambert, C.J., McGrath, R., Smerdon, J.: Phys. Rev. Lett. 102, 086801 (2009)

    Article  CAS  Google Scholar 

  11. Xu, B.Q., Li, X.L., Xiao, W.Y., Sakaguchi, H., Tao, N.J.: Nano Lett. 5, 1491 (2005)

    Article  CAS  Google Scholar 

  12. Dell, E.J., Capozzi, B., Xia, J., Venkataraman, L.: Nat. Chem. 7, 209 (2015)

    Article  CAS  Google Scholar 

  13. Troisi, A., Ratner, M.: Small 2, 172 (2006)

    Article  CAS  Google Scholar 

  14. Malen, J.A., Yee, S.K., Majumdar, A., Segalman, R.A.: Chem. Phys. Lett. 491, 109 (2010)

    Article  CAS  Google Scholar 

  15. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge, UK, New York (2006)

    Google Scholar 

  16. Tao, N.J.: Nat. Nanotechnol. 1, 173 (2006)

    Article  CAS  Google Scholar 

  17. Wold, D.J., Haag, R., Rampi, M.A., Frisbie, C.D.: J. Phys. Chem. B 106, 2813 (2002)

    Article  CAS  Google Scholar 

  18. Salomon, A., Cahen, D., Lindsay, S., Tomfohr, J., Engelkes, V.B., Frisbie, C.D.: Adv. Mater. 15, 1881 (2003)

    Article  CAS  Google Scholar 

  19. Joachim, C., Ratner, M.A.: Proc. Natl. Acad. Sci. U.S.A. 102, 8801 (2005)

    Article  CAS  Google Scholar 

  20. Yamada, R., Kumazawa, H., Tanaka, S., Tada, H.: Appl. Phys. Express 2, 025002 (2009)

    Article  Google Scholar 

  21. Paulsson, M., Datta, S.: Phys. Rev. B 67, 241403 (2003)

    Article  Google Scholar 

  22. Reddy, P., Jang, S.Y., Segalman, R.A., Majumdar, A.: Science 315, 1568 (2007)

    Article  CAS  Google Scholar 

  23. Baheti, K., Malen, J.A., Doak, P., Reddy, P., Jang, S.-Y., Tilley, T.D., Majumdar, A., Segalman, R.A.: Nano Lett. 8, 715 (2008)

    Article  CAS  Google Scholar 

  24. Tan, A., Balachandran, J., Sadat, S., Gavini, V., Dunietz, B.D., Jang, S.-Y., Reddy, P.: J. Am. Chem. Soc. 133, 8838 (2011)

    Article  CAS  Google Scholar 

  25. Tan, A., Balachandran, J., Dunietz, B.D., Jang, S.-Y., Gavini, V., Reddy, P.: Appl. Phys. Lett. 101, 243107 (2012)

    Article  Google Scholar 

  26. Malen, J.A., Doak, P., Baheti, K., Tilley, T.D., Segalman, R.A., Majumdar, A.: Nano Lett. 9, 1164 (2009)

    Article  CAS  Google Scholar 

  27. Widawsky, J.R., Chen, W., Vazquez, H., Kim, T., Breslow, R., Hybertsen, M.S., Venkataraman, L.: Nano Lett. 13, 2889 (2013)

    Article  CAS  Google Scholar 

  28. Lee, S.K., Ohto, T., Yamada, R., Tada, H.: Nano Lett. 14, 5276 (2014)

    Article  CAS  Google Scholar 

  29. Yee, S.K., Malen, J.A., Majumdar, A., Segalman, R.A.: Nano Lett. 11, 4089 (2011)

    Article  CAS  Google Scholar 

  30. Lee, S.K., Buerkle, M., Yamada, R., Asai, Y., Tada, H.: Nanoscale 7, 20497 (2015)

    Article  CAS  Google Scholar 

  31. Kim, Y., Jeong, W., Kim, K., Lee, W., Reddy, P.: Nat. Nanotechnol. 9, 881 (2014)

    Article  Google Scholar 

  32. Tanaka, S., Yamashita, Y.: Synth. Met. 101, 532 (1999)

    Article  CAS  Google Scholar 

  33. Tanaka, S., Yamashita, Y.: Trans. Mater. Res. Soc. Jpn. 26, 739 (2001)

    CAS  Google Scholar 

  34. Tanaka, S., Yamashita, Y.: Synth. Met. 119, 67 (2001)

    Article  CAS  Google Scholar 

  35. Ciszek, J.W., Stewart, M.P., Tour, J.M.: J. Am. Chem. Soc. 126, 13172 (2004)

    Article  CAS  Google Scholar 

  36. Ciszek, J.W., Tour, J.M.: Chem. Mater. 17, 5684 (2005)

    Article  CAS  Google Scholar 

  37. Dreesen, L., Volcke, C., Sartenaer, Y., Peremans, A., Thiry, P.A., Humbert, C., Grugier, J., Marchand-Brynaert, J.: Surf. Sci. 600, 4052 (2006)

    Article  CAS  Google Scholar 

  38. Xu, B.Q., Tao, N.J.: Science 301, 1221 (2003)

    Article  CAS  Google Scholar 

  39. Park, Y.S., Widawsky, J.R., Kamenetska, M., Steigerwald, M.L., Hybertsen, M.S., Nuckolls, C., Venkataraman, L.: J. Am. Chem. Soc. 131, 10820 (2009)

    Article  CAS  Google Scholar 

  40. Selzer, Y., Cabassi, M.A., Mayer, T.S., Allara, D.L.: Nanotechnology 15, S483 (2004)

    Google Scholar 

  41. Choi, S.H., Kim, B., Frisbie, C.D.: Science 320, 1482 (2008)

    Article  CAS  Google Scholar 

  42. Selzer, Y., Cabassi, M.A., Mayer, T.S., Allara, D.K.: J. Am. Chem. Soc. 126, 4052 (2004)

    Article  CAS  Google Scholar 

  43. Choi, S.H., Risko, C., Delgado, M.C.R., Kim, B., Bredas, J.-L., Frisbie, C.D.: J. Am. Chem. Soc. 132, 4358 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP20343741, JP15K13673 and JP25110012. L.S.K. would like to thank Henrique Rosa Testai for assistance in the thermoelectric experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Tada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lee, S.K., Yamada, R., Ohto, T., Tanaka, S., Tada, H. (2017). Charge Transport Mechanisms in Oligothiophene Molecular Junctions Studied by Electrical Conductance and Thermopower Measurements. In: Ogawa, T. (eds) Molecular Architectonics. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-57096-9_13

Download citation

Publish with us

Policies and ethics