Skip to main content

Electromagnetic Modes Inside the Island Kind 2D Photonic Crystal Resonator

  • Conference paper
  • First Online:
  • 1296 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Abstract

A binary island kind photonic crystal resonator is investigated analytically and numerically in the framework of standing wave expansion method. The photonic energy distribution and bandgap structure for the finite SiO2/SiO2 resonator with rectangular elementary cell of micron sizes are first calculated. The classification concept of resonator’s modes is proposed. It is concluded that depending on the structure three types of local states of electromagnetic field exist inside the resonator besides the transmitted standing waves: intrinsic, surface and edge states. The field distribution inside the resonator is calculated, and ways of use the island resonators in optical devices are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Glushko EY, Glushko OE, Karachevtseva LA (2012) Photonic Eigenmodes in a photonic crystal membrane. ISRN Optics 2012:Article ID 373968:6p. doi:10.5402/2012/373968

  2. Yablonovich E (1987) Inhibited spontaneous emission in solid state physics and electronics. Phys Rev Let 58:2059

    Article  ADS  Google Scholar 

  3. John S, Joannopoulos D, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton

    MATH  Google Scholar 

  4. Sakoda K (2001) Optical properties of photonic crystals. Springer, Berlin

    Book  Google Scholar 

  5. Winn NY, Fink S, Fan Y, Joannopoulos JD (1998) Omnidirectional reflection from a one-dimensional photonic crystal. Opt Lett 23:1573–1575

    Article  ADS  Google Scholar 

  6. Deopura M, Ullal CK, Temelkuran B, Fink Y (2001) Dielectric omnidirectional visible reflector. Opt Lett 26:1197–1199

    Article  ADS  Google Scholar 

  7. Loncar M, Doll T, Vuchkovich J, Scherer A (2000) Design and fabrication of silicon photonic crystal optical waveguides. J Lightwave Technol 18:1402–1411

    Article  ADS  Google Scholar 

  8. Jamois C, Wehrspohn RB, Andreani LC, Hermann C, Hess O, Gosele U (2003) Silicon-based two-dimensional photonic crystal waveguides. Photonics Nanostruct Fundam Appl 1:1–13

    Article  ADS  Google Scholar 

  9. Glushko EY, Glushko AE, Karachevtseva LA (2010) Photonic membranes and photonic crystal resonators for all-optical signal processing. Proc SPIE 7713:77131D

    ADS  Google Scholar 

  10. Glushko EY (2014) Influence of oxidation on the spectrum of a ternary comb-like silicon photonic crystal: intrinsic modes, reflection windows and intrinsic contrastivity. Eur Phys J D 68:264

    Article  ADS  Google Scholar 

  11. Glushko EY, Glushko AE, Evteev VN, Stepanyuk AN (2008) Electromagnetic eigenwaves in metastructures: perturbation theory method. Proc. SPIE. 6888:69880J–69880J-11

    Google Scholar 

  12. Courant R, Hilbert D (1953) Methods of mathematical Physics, vol 1. Interscience, New York

    MATH  Google Scholar 

  13. Gladwell GML, Zhu H (2002) Courant’s nodal line theorem and its discrete counterparts. Q J Mech Appl Math 55(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  14. Orfanidis SJ Electromagnetic waves and antennas, Chapter 9. Online book: http://eceweb1.rutgers.edu/~orfanidi/ewa/ch09.pdf

    Google Scholar 

  15. Oron R, Davidson N, Friesem AA (2001) Transverse mode shaping and selection in laser resonators. In: Wolf E (ed) Progress in optics 42. Elsevier Science, Burlington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ya. Glushko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Glushko, E.Y., Stepanyuk, A.N. (2017). Electromagnetic Modes Inside the Island Kind 2D Photonic Crystal Resonator. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_18

Download citation

Publish with us

Policies and ethics