Skip to main content

Presenting the ECO: Evolutionary Computation Ontology

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

Abstract

A well-established notion in Evolutionary Computation (EC) is the importance of the balance between exploration and exploitation. Data structures (e.g. for solution encoding), evolutionary operators, selection and fitness evaluation facilitate this balance. Furthermore, the ability of an Evolutionary Algorithm (EA) to provide efficient solutions typically depends on the specific type of problem. In order to obtain the most efficient search, it is often needed to incorporate any available knowledge (both at algorithmic and domain level) into the EA. In this work, we develop an ontology to formally represent knowledge in EAs. Our approach makes use of knowledge in the EC literature, and can be used for suggesting efficient strategies for solving problems by means of EC. We call our ontology “Evolutionary Computation Ontology” (ECO). In this contribution, we show one possible use of it, i.e. to establish a link between algorithm settings and problem types. We also show that the ECO can be used as an alternative to the available parameter selection methods and as a supporting tool for algorithmic design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Available online at: http://www.goo.gl/xSgVvv.

  2. 2.

    Available online at: http://www.goo.gl/xSgVvv.

References

  1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  2. Sowa, J.F.: Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, San Mateo (2014)

    MATH  Google Scholar 

  3. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1), 161–197 (1998)

    Article  MATH  Google Scholar 

  4. Riaño, D., Real, F., López-Vallverdú, J.A., Campana, F., Ercolani, S., Mecocci, P., Annicchiarico, R., Caltagirone, C.: An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. J. Biomed. Inf. 45(3), 429–446 (2012)

    Article  Google Scholar 

  5. Liao, S.H.: Expert system methodologies and applications-a decade review from 1995 to 2004. Expert Syst. Appl. 28(1), 93–103 (2005)

    Article  Google Scholar 

  6. Jin, Y.: Knowledge Incorporation in Evolutionary Computation, vol. 167. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  7. Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Trans. Evol. Comput. 10(3), 256–280 (2006)

    Article  Google Scholar 

  8. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  9. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

    Article  Google Scholar 

  10. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architecture and design of the heuristiclab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence, vol. 6, pp. 197–261. Springer International Publishing, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Kaur, G., Chaudhary, D.: Evolutionary computation ontology: e-learning system. In: 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–6, September 2015

    Google Scholar 

  12. Roussey, C., Pinet, F., Kang, M.A., Corcho, O.: An introduction to ontologies and ontology engineering. In: Falquet, G., Métral, C., Teller, J., Tweed, C. (eds.) Ontologies in Urban Development Projects, vol. 1, pp. 9–38. Springer, London (2011)

    Chapter  Google Scholar 

  13. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating your first ontology (2001)

    Google Scholar 

  14. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag. 14(1), 17 (1993)

    Google Scholar 

  15. Pan, J.Z.: Resource description framework. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 71–90. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview. W3C recommendation 10(10) (2004)

    Google Scholar 

  17. The World Wide Web Consortium (W3C) (2016). Accessed 14 Aug 2016. https://www.w3.org/

  18. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68234-9_39

    Chapter  Google Scholar 

  19. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

    MATH  Google Scholar 

  20. Johnson, J., Louis, S.J.: Case-initialized genetic algorithms for knowledge extraction and incorporation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 57–79. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. De Jong, K.A., Spears, W.M.: A formal analysis of the role of multi-point crossover in genetic algorithms. Ann. Math. Artif. Intell. 5(1), 1–26 (1992)

    Article  MATH  Google Scholar 

  22. Falco, I.D., Cioppa, A.D., Tarantino, E.: Mutation-based genetic algorithm: performance evaluation. Appl. Soft Comput. 1(4), 285–299 (2002)

    Article  Google Scholar 

  23. Bäck, T., Eiben, A.E., van der Vaart, N.A.L.: An empirical study on GAs “without parameters”. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Proceedings of the 6th International Conference on Parallel Problem Solving from Nature (PPSN VI), London, UK, pp. 315–324. Springer-Verlag (2000). ISBN: 3-540-41056-2

    Google Scholar 

  24. Yeguas, E., Luzón, M., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tuning for evolutionary algorithms using a bayesian case-based reasoning system. Appl. Soft Comput. 18, 185–195 (2014)

    Article  Google Scholar 

  25. Picek, S., Jakobovic, D.: From fitness landscape to crossover operator choice. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 815–822. ACM (2014)

    Google Scholar 

  26. Asmus, J., Borchmann, D., Sbalzarini, I.F., Walther, D.: Towards an FCA-based recommender system for black-box optimization. In: Workshop Notes, p. 35 (2014)

    Google Scholar 

  27. Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory analysis of genetic algorithms. IEEE Trans. Evol. Comput. 8(4), 405–421 (2004)

    Article  Google Scholar 

  28. Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

    Article  Google Scholar 

  29. Neumüller, C., Wagner, S., Kronberger, G., Affenzeller, M.: Parameter meta-optimization of metaheuristic optimization algorithms. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 367–374. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27549-4_47

    Chapter  Google Scholar 

  30. Inspyred: Bio-inspired Algorithms in Python (2016). Accessed 11 Nov 2016. http://pythonhosted.org/inspyred/

  31. Matlab Genetic Algorithm Toolbox (2016). Accessed 11 Nov 2016. https://www.mathworks.com/help/gads/genetic-algorithm.html

  32. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: presentation of the noiseless functions. Technical report, Citeseer (2010)

    Google Scholar 

  33. Zhang, J., Chung, H.S., Lo, A.W., Hu, B.: Fuzzy knowledge incorporation in crossover and mutation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, vol. 167, pp. 123–143. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

  35. He, J., Kang, L.: On the convergence rates of genetic algorithms. Theor. Comput. Sci. 229(1), 23–39 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. PPSN 92, 15–25 (1992)

    Google Scholar 

  37. Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms optimize separable functions in parallel?. In: Proceedings of the Twelfth Workshop on Foundations of Genetic Algorithms XII, FOGA XII 2013, pp. 51–64. ACM, New York (2013)

    Google Scholar 

  38. Back, T.: Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, IEEE World Congress on Computational Intelligence, vol. 1, pp. 57–62, June 1994

    Google Scholar 

  39. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. Technical Report, Nanyang Technological University, Singapore, AND KanGAL Report 2005005, IIT Kanpur, India, May 2005

    Google Scholar 

  40. Gates, G.H., Merkle, L.D., Lamont, G.B., Pachter, R.: Simple genetic algorithm parameter selection for protein structure prediction. In: IEEE International Conference on Evolutionary Computation, vol. 2, pp. 620–624. IEEE (1995)

    Google Scholar 

  41. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and population size reduction in compact differential evolution. In: 2011 IEEE Workshop on Memetic Computing (MC), pp. 1–8. IEEE (2011)

    Google Scholar 

  42. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)

    Google Scholar 

Download references

Acknowledgments

figure b

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 665347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Iacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yaman, A., Hallawa, A., Coler, M., Iacca, G. (2017). Presenting the ECO: Evolutionary Computation Ontology. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics