Skip to main content

Probabilistic Tsunami Hazard Assessment for a Site in Eastern Canada

  • Chapter
  • First Online:
Global Tsunami Science: Past and Future, Volume I

Abstract

Unlike probabilistic seismic hazard analysis (PSHA), there is not a well-established methodology for probabilistic tsunami hazard analysis (PTHA). The PTHA methodology presented is similar to the widely used PSHA methodology for ground motion, and incorporates both aleatory and epistemic uncertainty in calculating the probability of exceeding runup and drawdown values produced by tsunamigenic sources. Evaluating tsunami hazard is more difficult in locations such as the eastern coastline of Canada because of low tsunami recurrence rates and few historical examples. In this study, we evaluated the hazard from local and far-field earthquake and landslide tsunamigenic sources at a site on the Bay of Fundy in New Brunswick, Canada. These sources included local faults, the Puerto Rico subduction zone, fault sources in the Azores-Gibraltar plate boundary region, and landslides on the Canadian continental slope and in the Canary Islands. Using a new PTHA methodology that is closely linked to well-established PSHA methodology combined with tide stage probability, we calculated that the return period for a wave runup exceeding the tidal range of +4 m level above mean sea level (highest astronomical tide) is approximately 14,500 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands), Tsunami source and near field effects. Journal of Geophysical Research, 117, C05030. doi:10.1029/2011JC007646.

    Article  Google Scholar 

  • Abrahamson, N. A., Somerville, P. G., & Cornell, C. A. (1990). Uncertainty in numerical strong ground motion predictions. In Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, Palm Springs, CA (Vol. 1, pp. 407–416).

    Google Scholar 

  • Amante, C., & Eakins, B. W. (2009). ETOPO1 1 Arc-Minute Global Relief Model, Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. Accessed 2012.

    Google Scholar 

  • Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree Approach for Probabilistic Tsunami Hazard Analysis and its Applications to the Japanese Coasts. Pure and Applied Geophysics, 164, 577–592.

    Article  Google Scholar 

  • Apotsos, A., Buckley, M., Gelfenbaum, G., Jaffe, B., & Vatvani, D. (2011). Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications. Pure and Applied Geophysics, 168(11):2097–2119

    Article  Google Scholar 

  • Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group (AGMTHAG). (2008). “Evaluation of tsunami sources with the potential to impact the U.S. Atlantic and Gulf coasts”, a report to the Nuclear Regulatory Commission, U.S. Geological Survey Administrative Report, p. 300.

    Google Scholar 

  • Baptista, M. A., Miranda, J. M., & Luis, J. F. (2006). In search of the 31 March 1761 earthquake and tsunami source. Bulletin of the Seismological Society of America, 96, 713–721.

    Article  Google Scholar 

  • Barkan, R., ten Brink, U., & Lin, J. (2009). Far field tsunami simulations of the 1755 Lisbon earthquake, implications for tsunami hazard to the U.S. east coast and the Caribbean. Marine Geology, 264, 109–122.

    Article  Google Scholar 

  • Booth, J. S., O’Leary, D. W., Popenoe, P., & Danforth, W. W. (1993). U.S. Atlantic slope landslides, their distribution, general attributes, and implications. In W.C. Schwab, H.J. Lee & D.C. Twichell (Eds.), Submarine landslides, selected studies in the U.S. Exclusive Economic Zone (pp. 14–22) USGS Bulletin 2002.

    Google Scholar 

  • British Oceanographic Data Centre (BODC). (2014). General Bathymetric Chart of the Oceans (GEBCO_08), http://www.gebco.net/about_us/news_and_events/gebco_08_release.html. Accessed 11 June 2014.

  • Buforn, E., Udias, A., & Mezcua, J. (1988). Seismicity and focal mechanism in south Spain. Bulletin of the Seismological Society of America, 88, 2008–2224.

    Google Scholar 

  • Burke, K.B.S. & Stringer, P. (1993). A search for neotectonic features in the Passamaquoddy Bay region, southwestern New Brunswick. Current Research, Part D, Eastern Canada and National and General Programs, Geological Survey of Canada, Paper 93-1D, pp. 93–102

    Google Scholar 

  • Calais, E., DeMets, C., & Nocquet, J. M. (2003). Evidence for a post-3.16-Ma change in Nubia-Eurasia-North America plate motions? Earth and Planetary Science Letters, 6825, 1–12.

    Google Scholar 

  • Calais, E., Mazabraud, Y., Mercier de Lepinay, B., Mann, P., Mattioli, G., & Jansma, P. (2002). Strain partitioning and fault slip rates in the northeastern Caribbean from GPS measurements. Geophysical Research Letters, 29, 3-1–3-4.

    Article  Google Scholar 

  • Chaytor, J., ten Brink, U. S., Solow, A. R., & Andrews, B. D. (2009). Size distribution of submarine landslides along the U.S. Atlantic Margin. Marine Geology, 264, 16–27.

    Article  Google Scholar 

  • Chaytor, J. D., Twichell, D., & ten Brink, U. S. (2012). Reevaluation of the Munson–Nygren–Retriever submarine landslide complex, Georges Bank Lower Slope, Western North Atlantic. In Y. Yamada, K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. Chaytor, M. Strasser (Eds.), Submarine Mass Movements and their Consequences, Advances in Natural and Technological Hazards Research (Vol. 31, pp. 131–145).

    Google Scholar 

  • Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132, 220–230.

    Article  Google Scholar 

  • Cornell, C.A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.

    Google Scholar 

  • Cornell, C. A. (1971). Probabilistic analysis of damage to structures under seismic loads. In Dynamic Waves in Civil Engineering. London: Wiley.

    Google Scholar 

  • Day, S. J., Watts, P., Grilli, S. T., & Kirby, J. T. (2005). Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Marine Geology, 215, 59–92.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80.

    Article  Google Scholar 

  • DeMets, C., Gordon, R., Argus, D., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101, 425–478.

    Article  Google Scholar 

  • Dolan, J.F., & Wald, D. (1998). The 1943-1953 north-central Caribbean earthquakes: active tectonic setting, seismic hazards, and implications for Caribbean-North America plate motions. In Dolan, J. & Mann, P. (Eds.), Active strike-slip and collisional tectonics of the Northern Caribbean Plate Boundary Zone. Geological Society of America Special Paper 326, Boulder, Colorado, pp. 143–169.

    Google Scholar 

  • Electric Power Research Institute (EPRI), U.S. Department of Energy, and U.S. Nuclear Regulatory Commission. (2012). Technical Report, Central and Eastern United States Seismic Source Characterization for Nuclear Facilities.

    Google Scholar 

  • Enet, F., & Grilli, S. T. (2005). Tsunami Landslide Generation: Modelling and Experiments. In Proc. 5th Intl. on Ocean Wave Measurement and Analysis, IAHR Publication, p. 10.

    Google Scholar 

  • Enet, F., & Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133, 442–454.

    Article  Google Scholar 

  • Enet, F, Grilli, S. T., & Watts, P. (2003), Laboratory experiments for tsunamis generated by underwater landslides: comparison with numerical modeling. In Proc. 13th Offshore and Polar Engineering Conference (pp. 372–379).

    Google Scholar 

  • Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., & Kulikov, E. A. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929, preliminary analysis and numerical modeling. Marine Geology, 45–57.

    Article  Google Scholar 

  • Fukao, Y. (1973). Thrust faulting at a lithospheric plate boundary, the Portugal earthquake of 1969. Earth and Planetary Science Letters, 18, 205–216.

    Article  Google Scholar 

  • Gates, O. (1989). The geology and geophysics of the Passamaquoddy Bay area, Maine and New Brunswick, and their bearing on local subsidence. In W. A. Anderson & H. W. Borns (Eds.), Neotectonics of Maine (Vol. 40, pp. 11–24), Maine Geological Survey.

    Google Scholar 

  • Geist, E. L., Lynett, P. J., & Chaytor, J. D. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264, 41–52.

    Article  Google Scholar 

  • Geist, E. L., & Parsons, T. (2009). Assessment of source probabilities for potential tsunamis affecting the U.S. Atlantic coast. Marine Geology, 264, 98–108. doi:10.1016/j.margeo.2008.08.005.

    Article  Google Scholar 

  • Gica, E., Spillane, M., Titove, V. V., Chamberline, C.D., & Newman, J.C. (2008). Development of the Forecast Propagation Database for Noaa’s Short-Term Inundation Forecast for Tsunamis (SIFT), NOAA Technical Memorandum OAR PMEL-139, p. 89.

    Google Scholar 

  • Giles, M. K., Mosher, D. C., Piper, D. J. W., & Wach, G. D. (2010). Mass transport deposits on the southwestern newfoundland slope, submarine mass movements and their consequences. In D.C. Mosher, R.C. Shipp, L. Moscardelli, J.D. Chaytor, C.D.P. Baxter, H.J. Lee, R. Urgeles (Eds.), Advances in Natural and Technological Hazards Research (Vol. 28, pp. 657–665).

    Google Scholar 

  • González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas D., Bellomo, D., Carlton, D., Horning, T., Johnson,J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., & Yalciner, A. (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research, 114(C11), 1978–2012. doi:10.1029/2008JC005132.

  • Gràcia, E., Vizcaino, A., Escutia, C., Asioli, A., Rodés, A., Garcia-Orellano, J., et al. (2010). Holocene earthquake record offshore Portugal (SW Iberia), testing turbidite paleoseismology in a slow-convergence margin. Quaternary Science Reviews, 29, 1156–1172.

    Article  Google Scholar 

  • Grilli, S. T. (1997). Fully nonlinear potential flow models used for long wave runup prediction. In H. Yeh, P. Liu, & C. Synolakis (Eds.), Long-Wave Runup Models (pp. 116–180). Singapore: World Scientific Publishing.

    Google Scholar 

  • Grilli, S. T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J. T., & Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards Earth Systems Science., 10, 2109–2125.

    Article  Google Scholar 

  • Grilli, A.R., & Grilli, S. T. (2013a). Modeling of Tsunami Generation, propagation and regional impact along the upper U.S. east coast from the Azores Convergence Zone. Draft report to NTHMP, p. 13.

    Google Scholar 

  • Grilli, A. R., & Grilli, S. T. (2013b). Far-field tsunami impact on the US East Coast from an extreme flank collapse of the Cumbre Vieja volcano (Canary Islands). Draft report to NTHMP, p. 13.

    Google Scholar 

  • Grilli, S. T., Harris, J.C., & Bakhsh, T. T. (2011). Literature review of tsunami sources affecting tsunami hazard along the US East Coast. Research Report No. CACR-11-08, p. 60.

    Google Scholar 

  • Grilli, S.T., O’Reilly, C., & Bakhsh, T. T. (2013). Modeling of SMF tsunami generation and regional impact along the upper U.S. East Coast. Research Report No. CACR-13-05, p. 46.

    Google Scholar 

  • Grilli, S. T., O’Reilly, C., Harris, J. C., Bakhsh, T. T., Tehranirad, B., Banihashemi, S., et al. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Natural Hazards. doi:10.1007/s11069-014-1522-8.

    Article  Google Scholar 

  • Grilli, S. T., Taylor, O. S., Baxter, C. D. P., & Maretzki, S. (2009). A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Marine Geology, 264, 74–97.

    Article  Google Scholar 

  • Grilli, S. T., Vogelmann, S., & Watts, P. (2002). Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 264, 301–313.

    Article  Google Scholar 

  • Grilli, S. T., & Watts, P. (1999). Modeling of waves generated by a moving submerged body, Applications to underwater landslides. Engineering Analysis with Boundary Elements, 23, 645–656.

    Article  Google Scholar 

  • Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure part I, modeling, experimental validation, and sensitivity analysis. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131, 283–297.

    Article  Google Scholar 

  • Grilli, S. T, Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T., & Watts, P. (2007) Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 414–428

    Article  Google Scholar 

  • Grimison, N. L., & Chen, W. (1986). The Azores-Gibraltar plate boundary, focal mechanisms, depth of earthquakes and their tectonic implications. Journal of Geophysical Research, 91, 2029–2047.

    Article  Google Scholar 

  • Gutscher, M.-A., Baptista, M. A., & Miranda, J. M. (2006). The Gibraltar Arc seismogenic zone (part 2), constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by tsunami modeling and seismic intensity, Tectonophysics, 426, 153–166, doi:10.1016/j.tecto.2006.02.025.

    Article  Google Scholar 

  • Harris, J. C., Grilli, S. T., Abadie, S., & Bakhsh, T. T. (2012). Near- and far-field tsunami hazard from the potential flank collapse of the Cumbre Vieja Volcano. In Proceedings of the twenty-second International Offshore and Polar Engineering Conference (p. 242).

    Google Scholar 

  • Hayward, N., Watts, A. B., Westbrook, G. K., & Collier, J. S. (1999). A seismic reflection and GLORIA study of compressional deformation in the Gorringe Bank region, eastern North Atlantic. Geophysical Journal International., 138, 831–850.

    Article  Google Scholar 

  • Horillo, J., Grilli, S. T., Nicolsky, D., Roeber, V., & Zhang, J. (2014). Performance benchmarking tsunami models for NTHMP’s inundation mapping activities. Pure and Applied Geophysics. doi:10.1007/s00024014-0891.

  • Hunt, J. E. (2012). Determining the provenance, recurrence, magnitudes and failure mechanisms of submarine landslides from the Moroccan Margin and Canary Islands using distal turbidite records. Dissertation, University of South Hampton. p. 374.

    Google Scholar 

  • Hunt, J. E., Talling, P. J., Clare, M. A., Jarvis, I., & Wynn, R. B. (2014). Long-term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands. Geochemistry, Geophysics, Geosystems, 15, 3322–3345.

    Article  Google Scholar 

  • Hunt, J. E., Wynn, R.B., Talling, P. J., & Masson, D. G. (2013). Multistage collapse of eight Western Canary Island landslides in the last 1.5 Ma, sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochemistry, Geophysics, Geosystems, 14, 2159–2181. doi:10.1002/ggge.20138.

    Article  Google Scholar 

  • Huppertz, T. J., Piper, D. J. W., Mosher, D. C., & Jenner, K. (2010). The significance of mass-transport deposits for the evolution of a proglacial continental slope. In Mosher, D. C., Shipp, R. C., Moscardelli, L., Chaytor, J. D., Baxter, C. D. P., Lee, H. J., & Urgeles, R. (Eds.), Submarine mass movements and their consequences. Advances in natural and technological hazards research (Vol. 28, pp. 631–641). Netherlands: Springer.

    Google Scholar 

  • Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S. T., Kirby, J.T., & Watts, P. (2007). Modeling the 26 December 2004 Indian Ocean tsunami, case study of impact in Thailand. Journal of Geophysical Research, 112, C07024. doi:10.1029/2006JC03850.

  • Jansma, P., Mattioli, G. S., Lopez, A., DeMets, C., Dixon, T. H., Mann, P., et al. (2000). Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS Geodesy. Tectonics., 19, 1021–1037.

    Article  Google Scholar 

  • Johnston, A. C. (1996). Seismic movement assessment of earthquakes in stable continental regions; III, New Madrid 1811-1812, Charleston 1886 and Lisbon 1755. Geophysical Journal International, 126, 314–344.

    Article  Google Scholar 

  • Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modeling, 62, 39–55.

    Article  Google Scholar 

  • Krentz, S. (2009). Potentially tsunamigenic layer in late Holocene Great South Bay, Long Island, New York, constraints on origins, processes, and effects. Master’s Thesis, Vanderbilt University, p. 77.

    Google Scholar 

  • Kulkarni, R. B., Youngs, R. R., & Coppersmith, K. J. (1984). Assessment of confidence intervals for results of seismic hazard analysis. In Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, California (Vol. 1, pp. 263–270).

    Google Scholar 

  • LaForge, R. C., & McCann, W. R. (2005). A seismic source model for Puerto Rico, for use in probabilistic ground motion hazard analyses. In P. Mann (Ed.), Active tectonics and seismic hazards of Puerto Rico, the Virgin Islands, and offshore areas (pp. 223–248). Geological Society of America Special Paper 385.

    Google Scholar 

  • Lee, H. J. (2009). Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Marine Geology, 264, 53–64.

    Article  Google Scholar 

  • Leonard, L. J., Rogers, G. C., & Mazzotti, S. (2012). A preliminary tsunami hazard assessment of the Canadian coastline. Geological Survey of Canada, Open File 7201, p. 126.

    Google Scholar 

  • Locat, J., Lee, H., ten Brink, U., Twichell, D. C., Geist, E. L., & Sansoucy, M. (2009). Geomorphology, stability and mobility of the Currituck slide. Marine Geology., 264, 28–40.

    Article  Google Scholar 

  • Locat, J., ten Brink, U. S., & Chaytor, J. D. (2013). A geomorphological analysis of the Veatch slide complex off Massachusetts, U.S.A. In S. Krastel, J.-H. Behrmann, D. Völker, M. Stipp, C. Berndt, R. Urgeles, J. Chaytor, K. Huhn, M. Strasser, & C.B. Harbitz (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research (Vol. 37, pp. 371–380).

    Google Scholar 

  • Løvholt, F., Pedersen, G., & Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113, C09026. doi:10.1029/2007JC004603.

  • Luque, L., Lario, J., Civis, J., Silva, P. G., Zazo, C., Goy, J. L., et al. (2002). Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. Journal of Quaternary Science, 17, 623–631.

    Article  Google Scholar 

  • Mader, C. L. (2001). Modeling the La Palma landslide tsunami. Science of Tsunami Hazards, 19, 150–170.

    Google Scholar 

  • Maretzki, S., Grilli, S., & Baxter, C. D. P. (2007). Probabilistic SMF tsunami hazard assessment for the upper East Coast of the United States. In V. Lykousis, D. Sakellariou, & J. Locat (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research (Vol. 27, pp. 377–385).

    Chapter  Google Scholar 

  • Masson, D. G., Watts, A. B., Gee, M. J. R., Urgeles, R., Mitchell, N. C., Le Bas, T. P., et al. (2002). Slope failures on the flanks of the western Canary Islands. Earth Science Reviews, 57, 1–35.

    Article  Google Scholar 

  • Matthews, M., Ellsworth, W., & Reasenberg, P. (2002). A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America., 92, 2233–2250.

    Article  Google Scholar 

  • McAdoo, B. G., Pratson, L. F., & Orange, D. L. (2000). Submarine landslide geomorphology, US continental slope. Marine Geology, 169, 103–136.

    Article  Google Scholar 

  • McCann, W. R. (1985). On the earthquake hazard of Puerto Rico and the Virgin Islands. Bulletin of the Seismological Society of America, 75, 251–262.

    Google Scholar 

  • McGuire, R. K. (2004). Seismic hazard and risk analysis, Earthquake Engineering Research Institute, Second Monograph Series, MNO-10, p. 239.

    Google Scholar 

  • Moore, A. L., McAdoo, B. G., & Ruffman, A. (2007). Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology, 200, 336–346.

    Article  Google Scholar 

  • Morales, J. A., Borrego, J., San Miguel, E. G., López-González, N., & Carro, B. (2008). Sedimentary record of recent tsunamis in the Huelva Estuary (southwestern Spain). Quaternary Science Reviews, 27, 734–746.

    Article  Google Scholar 

  • Mosher, D. C., & Campbell, D. C. (2011). The Barrington Submarine Mass-Transport Deposit, Western Scotian Slope, Canada. Mass-Transport Deposits in Deepwater Settings, Society of Economic Paleontologists and Mineralogists, Special Publications 96, pp. 151–159.

    Google Scholar 

  • Mosher, D. C., & Piper, D. J. W. (2007). Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. In V. Lykousis, D. Sakellariou, & J. Locat (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research (pp. 77–88).

    Chapter  Google Scholar 

  • Mosher, D. C., & Piper, D. J. W. (2007). Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. In V. Lykousis, D. Sakellariou, & J. Locat (Eds.), Submarine Mass Movements and Their Consequences (pp. 77–88).

    Chapter  Google Scholar 

  • Mueller, C. S., Frankel, A. D., Petersen, M. D., & Leyendecker, E. V. (2003). Documentation for the 2003 USGS Seismic Hazard Maps for Puerto Rico and the U.S. Virgin Islands. USGS Open File Report 03-379, p. 12.

    Google Scholar 

  • Muir-Wood, R., & Mignan, A. (2009). A phenomenological reconstruction of the Mw 9 November 1st 1755 earthquake source. In L.A. Mendes-Victor, C.S. Olivera, J. Azevedo, & A. Ribeiro (Eds.) The 1755 Lisbon earthquake, revisited, Geotechnical, Geological, and Earthquake Engineering (Vol. 7, pp. 121–146).

    Google Scholar 

  • National Center for Environmental Information (NCEI). (2014). National Geophysical Data Center, www.ngdc.noaa.gov Accessed 13 Oct 2014.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.

    Google Scholar 

  • Pacific Gas & Electric Company (PGEC). (2010). Methodology for Probabilistic Tsunami Hazard Analysis, Trial Application for the Diablo Canyon Power Plant Site. Submitted to the PEER Workshop on Tsunami Hazard Analyses for Engineering Design Parameters, Berkeley, CA, p. 197.

    Google Scholar 

  • Pararas-Carayannis, G. (2002). Evaluation of the threat of mega tsunami generation from postulated massive slope failures of island stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii. Science of Tsunami Hazards, 20, 251–277.

    Google Scholar 

  • Piper, D.J.W., Mosher, D.C., Gaulry, B.-J., Jenner, K., & Campbell, D.C. (2003). The Chronology and Recurrence of Submarine Mass Movements on the Continental Slope off Southeastern Canada. Locat, J. and Mienert, J. (editors), Submarine Mass Movements and Their Consequences, pp. 299–306

    Chapter  Google Scholar 

  • Piper, D. J. W., Mosher, D. C., & Campbell, D. C. (2012). Controls on the distribution of major types of submarine landslides. In J. J. Clague & D. Stead (Eds.), Landslides, Types, Mechanisms and Modeling (pp. 95–107). Cambridge University Press.

    Google Scholar 

  • Rikitake, T., & Aida, I. (1988). Tsunami Hazard probability in Japan. Bulletin of the Seismological Society of America., 78, 1268–1278.

    Google Scholar 

  • Roworth, E., & Signell, R. (1999). Construction of digital bathymetry for the Gulf of Maine. USGS Open File Report, 98-801.

    Google Scholar 

  • Ruffman, A. (1997). Tsunami runup mapping as an emergency preparedness planning tool: the 1929 tsunami in St. Lawrence, Newfoundland, Geomarine Associates. Contract Report for Emergency Preparedness Canada, Ottawa, Ontario (Vol. 1, p. 107).

    Google Scholar 

  • Ruffman, A. (2006). Documentation of the farfield parameters of the November 1, 1755 “Lisbon” tsunami along the shores of the western Atlantic Ocean, Program and Abstracts, International Tsunami Society Third Tsunami Symposium.

    Google Scholar 

  • Scheffers, A., & Kelletat, D. (2005). Tsunami relics on the coastal landscape west of Lisbon, Portugal. Science of Tsunami Hazards, 23, 3–16.

    Google Scholar 

  • Service New Brunswick. (2014). GeoNB DEM Data Catalogue, http://www.snb.ca/geonb1/e/DC/catalogue-E.asp.

  • Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012a). A high-order adaptivetime-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51.

    Article  Google Scholar 

  • Shi, F., Kirby, J. T., & Tehranirad, B. (2012b). Tsunami benchmark results for spherical coordinate. Center for Applied Coastal Research Report, CACR 2012-02, University of Delaware, Newark, Delaware.

    Google Scholar 

  • Stelling, G. S., & Duinmeijer, S. P. A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. International Journal Numerical Methods in Fluids, 43, 1329–1354.

    Article  Google Scholar 

  • Stelling, G. S. & Leendertse, J. J. (1992). Approximation of convective processes by cyclic AOI methods. In M. L. Spaulding, K. Bedford, & A. Blumberg (Eds.) Estuarine and coastal modeling, Proceedings 2nd Conference on Estuarine and Coastal Modelling (pp. 771–782). Tampa: ASCE.

    Google Scholar 

  • Sykes, L., McCann, W., & Kafka, A. (1982). Motion of Caribbean plate during last seven million years and implications for earlier Cenozoic movements. Journal of Geophysical Research, 87, 10656–10676.

    Article  Google Scholar 

  • Tappin, D. R., Watts, P., & Grilli, S. T. (2008). The Papua New Guinea tsunami of 1998, anatomy of a catastrophic event. Natural Hazards and Earth System Sciences., 8, 243–266.

    Article  Google Scholar 

  • Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., et al. (2015). Far-field tsunami hazard on the western European and US east coast from a large scale flank collapse of the Cumbre Vieja volcano, La Palma. Pure and Applied Geophysics, 172, 3589–3616.

    Article  Google Scholar 

  • Tehranirad, B., Shi, F., & Kirby, J. T. (2012). Tsunami benchmark results for spherical coordinate, Center for Applied Coastal Research Report, CACR 2013-10, University of Delaware, Newark, Delaware.

    Google Scholar 

  • Tehranirad, B., Shi, F., Kirby, J. T., Harris, J. C., & Grilli, S. (2013). Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 2.1. Research Report No. CACR-13-10, Center for Applied Coastal Research, University of Delaware.

    Google Scholar 

  • ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., & Andrews, B. D. (2014). Assessment of tsunami hazard to the U.S. Atlantic margin. Marine Geology, 353, 31–54.

    Article  Google Scholar 

  • ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264, 65–73.

    Article  Google Scholar 

  • Thiebot, E., & Gutscher, M.-A. (2006). The Gibraltar Arc seismogenic zone (part 1), constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by seismic data, gravity and thermal modeling. Tectonophysics., 426, 135–152.

    Article  Google Scholar 

  • Thio, H. K., Somerville, P., & Polet, J. (2010). Probabilistic Tsunami Hazard in California, Pacific Earthquake Engineering Research Center (PEER), College of Engineering, University of California, Berkeley, PEER Report 2010/108.

    Google Scholar 

  • Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2007). Double jeopardy, Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophysical Research Letters, 34, L15607. doi:10.1029/2007GL030685.

  • Tuttle, M. P., Mahani, A. B., Dyer-Williams, K., MacKay, A. S., & Busch, T. A. (2014). Paleoseismology project in the region of the Lepreau Nuclear Generating Station, prepared for the New Brunswick Power Nuclear Corporation, p. 290.

    Google Scholar 

  • Tuttle, M. P., Ruffman, A., Anderson, T., & Jeter, H. (2004). Distinguishing tsunami deposits from storm deposits along the coast of northeastern North America: Lessons learned from the 1929 Grand Banks tsunami and the 1991 Halloween storm. Seismological Research Letters, 75, 117–131.

    Article  Google Scholar 

  • Vatvani, D. (2005). Hindcast of tsunami flooding in Aceh-Sumatra. In Proceedings of the Fifth International Symposium on Ocean Wave Measurement and Analysis-Waves.

    Google Scholar 

  • Van Veen B.A.D, Vatvani D., Zijl F., (2014) Tsunami flood modelling for Aceh & west Sumatra and its application for an early warning system. Continental Shelf Research, 79, 46–53

    Article  Google Scholar 

  • Ward, S. N., & Day, S. (2001). Cumbre Vieja Volcano—potential collapse and tsunami at La Palma, Canary Islands. Geophysical Research Letters, 28, 3397–3400.

    Article  Google Scholar 

  • Watts, P., & Grilli, S. T. (2003). Underwater landslide shape, motion, deformation, and tsunami generation. In Proc., 13th Offshore and Polar Engineering Conf., International Society of Offshore and Polar Engineers, Cupertino, CA (Vol. 3, pp. 364–371).

    Google Scholar 

  • Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth Systems Science, 3, 391–402.

    Article  Google Scholar 

  • Watts, P., Grilli, S., Tappin, D., & Fryer, G. (2005). Tsunami generation by submarine mass failure, II, predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131, 298–310.

    Article  Google Scholar 

  • Wynn, R. B., & Masson, D. G. (2003). Canary Islands landslides and tsunami generation, can we use turbidite deposits to interpret landslide processes. In J. Locat, & J. Mienert (Eds.), Submarine Mass Movements and their Consequences, Advances in Natural and Technological Hazards Research (Vol. 19, pp. 325–332).

    Chapter  Google Scholar 

  • Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological Society of America, 75, 939–964.

    Google Scholar 

  • Zitellini, N., Mendes, L. A., Cordoba, D., Danobeitia, J., Nicolich, R., Pellis, G., et al. (2001). Source of 1755 Lisbon earthquake and tsunami investigated. Eos Transactions, 82, 285–291.

    Google Scholar 

  • Zitellini, N., Rovere, M., Terrinha, P., Chierici, F., Matias, L., Medes-Victor, L., et al. (2004). Neogene through quaternary tectonic reactivation of SW Iberian passive margin. Pure and Applied Geophysics, 161, 565–587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trajce Alcinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Kulkarni, V. et al. (2016). Probabilistic Tsunami Hazard Assessment for a Site in Eastern Canada. In: Geist, E.L., Fritz, H.M., Rabinovich, A.B., Tanioka, Y. (eds) Global Tsunami Science: Past and Future, Volume I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55480-8_5

Download citation

Publish with us

Policies and ethics