Skip to main content

Mitochondria in Structural and Functional Cardiac Remodeling

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

The heart must function continuously as it is responsible for both supplying oxygen and nutrients throughout the entire body, as well as for the transport of waste products to excretory organs. When facing either a physiological or pathological increase in cardiac demand, the heart undergoes structural and functional remodeling as a means of adapting to increased workload. These adaptive responses can include changes in gene expression, protein composition, and structure of sub-cellular organelles involved in energy production and metabolism. Mitochondria are essential for cardiac function, as they supply the ATP necessary to support continuous cycles of contraction and relaxation. In addition, mitochondria carry out other important processes, including synthesis of essential cellular components, calcium buffering, and initiation of cell death signals. Not surprisingly, mitochondrial dysfunction has been linked to several cardiovascular disorders, including hypertension, cardiac hypertrophy, ischemia/reperfusion and heart failure. The present chapter will discuss how changes in mitochondrial cristae structure, fusion/fission dynamics, fatty acid oxidation, ATP production, and the generation of reactive oxygen species might impact cardiac structure and function, particularly in the context of pathological hypertrophy and fibrotic response. In addition, the mechanistic role of mitochondria in autophagy and programmed cell death of cardiomyocytes will be addressed. Here we will also review strategies to improve mitochondrial function and discuss their cardioprotective potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vliegen HW, van der Laarse A, Cornelisse CJ, Eulderink F. Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation. Eur Heart J. 1991;12(4):488–94.

    Article  CAS  PubMed  Google Scholar 

  2. Nadal-Ginard B, Anversa P, Kajstura J, Leri A. Cardiac stem cells and myocardial regeneration. Novartis Found Symp. 2005;265:142–54; discussion 55–7, 204–11.

    Google Scholar 

  3. Ford LE. Heart size. Circ Res. 1976;39(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  4. Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123(2):255–78.

    Article  CAS  PubMed  Google Scholar 

  5. McMullen JR, Izumo S. Role of the insulin-like growth factor 1 (IGF1)/phosphoinositide-3-kinase (PI3K) pathway mediating physiological cardiac hypertrophy. Novartis Found Symp. 2006;274:90–111; discussion -7, 52–5, 272–6.

    Google Scholar 

  6. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin- angiotensin-aldosterone system. Circulation. 1991;83(6):1849–65.

    Article  CAS  PubMed  Google Scholar 

  7. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79(1):215–62.

    CAS  PubMed  Google Scholar 

  8. Barki-Harrington L, Perrino C, Rockman HA. Network integration of the adrenergic system in cardiac hypertrophy. Cardiovasc Res. 2004;63(3):391–402.

    Article  CAS  PubMed  Google Scholar 

  9. Unger T, Li J. The role of the renin-angiotensin-aldosterone system in heart failure. J Renin-Angiotensin-Aldosterone Syst. 2004;5(Suppl 1):S7–10.

    Article  CAS  PubMed  Google Scholar 

  10. Archer SL. Mitochondrial dynamics – mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369(23):2236–51.

    Article  CAS  PubMed  Google Scholar 

  11. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–59.

    Article  CAS  PubMed  Google Scholar 

  12. Hom J, Sheu SS. Morphological dynamics of mitochondria – a special emphasis on cardiac muscle cells. J Mol Cell Cardiol. 2009;46(6):811–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuzmicic J, Del Campo A, Lopez-Crisosto C, Morales PE, Pennanen C, Bravo-Sagua R, et al. Mitochondrial dynamics: a potential new therapeutic target for heart failure. Rev Esp Cardiol. 2011;64(10):916–23.

    Article  PubMed  Google Scholar 

  14. Hoppel CL, Tandler B, Fujioka H, Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol. 2009;41(10):1949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C. Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2005;289(2):H868–72.

    Article  CAS  PubMed  Google Scholar 

  16. Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977;252(23):8731–9.

    CAS  PubMed  Google Scholar 

  17. Palmer JW, Tandler B, Hoppel CL. Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Phys. 1986;250(5 Pt 2):H741–8.

    CAS  Google Scholar 

  18. Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem. 2016;85:133–60.

    Article  CAS  PubMed  Google Scholar 

  19. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fung S, Nishimura T, Sasarman F, Shoubridge EA. The conserved interaction of C7orf30 with MRPL14 promotes biogenesis of the mitochondrial large ribosomal subunit and mitochondrial translation. Mol Biol Cell. 2013;24(3):184–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallace DC. Genetics: mitochondrial DNA in evolution and disease. Nature. 2016;535(7613):498–500.

    Article  CAS  PubMed  Google Scholar 

  22. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016;594(3):509–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chelli B, Falleni A, Salvetti F, Gremigni V, Lucacchini A, Martini C. Peripheral-type benzodiazepine receptor ligands: mitochondrial permeability transition induction in rat cardiac tissue. Biochem Pharmacol. 2001;61(6):695–705.

    Article  CAS  PubMed  Google Scholar 

  24. Scalettar BA, Abney JR, Hackenbrock CR. Dynamics, structure, and function are coupled in the mitochondrial matrix. Proc Natl Acad Sci U S A. 1991;88(18):8057–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Hajnoczky G. Ca2+-dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol. 2009;41(10):1972–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.

    Article  CAS  PubMed  Google Scholar 

  27. Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88(1):16–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 2003;116(Pt 13):2763–74.

    Article  CAS  PubMed  Google Scholar 

  29. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004;117(Pt 26):6535–46.

    Article  CAS  PubMed  Google Scholar 

  30. Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114(Pt 5):867–74.

    CAS  PubMed  Google Scholar 

  31. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  32. Olichon A, Emorine LJ, Descoins E, Pelloquin L, Brichese L, Gas N, et al. The human dynamin- related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002;523(1–3):171–6.

    Article  CAS  PubMed  Google Scholar 

  33. Cipolat S, de Brito OM, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. P Natl Acad Sci USA. 2004;101(45):15927–32.

    Article  CAS  Google Scholar 

  34. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 2009;187(7):1023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frezza C, Cipolat S, de Brito OM, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177–89.

    Article  CAS  PubMed  Google Scholar 

  36. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol. 1998;143(2):351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santel A, Frank S. Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life. 2008;60(7):448–55.

    Article  CAS  PubMed  Google Scholar 

  39. Jofuku A, Ishihara N, Mihara K. Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein. Biochem Bioph Res Co. 2005;333(2):650–9.

    Article  CAS  Google Scholar 

  40. Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell. 2008;19(6):2402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otera H, Wang CX, Cleland MM, Setoguchi K, Yokota S, Youle RJ, et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 2010;191(6):1141–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao J, Liu T, Jin S, Wang X, Qu M, Uhlen P, et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 2011;30(14):2762–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Loson OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24(5):659–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem. 2013;288(38):27584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–32.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang X, Jiang H, Shen Z, Wang X. Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci U S A. 2014;111(41):14782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–U47.

    Article  PubMed  CAS  Google Scholar 

  49. Shen T, Zheng M, Cao CM, Chen CL, Tang J, Zhang WR, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282(32):23354–61.

    Article  CAS  PubMed  Google Scholar 

  50. Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O’Shea KM, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parra V, Eisner V, Chiong M, Criollo A, Moraga F, Garcia A, et al. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res. 2008;77(2):387–97.

    Article  CAS  PubMed  Google Scholar 

  52. Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, et al. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell. 2016;27(2):349–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pei H, Yang Y, Zhao H, Li X, Yang D, Li D, et al. The role of mitochondrial functional proteins in ROS production in ischemic heart diseases. Oxidative Med Cell Longev. 2016;2016:5470457.

    Article  Google Scholar 

  54. Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84(1):91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–22.

    Article  CAS  PubMed  Google Scholar 

  56. Zepeda R, Kuzmicic J, Parra V, Troncoso R, Pennanen C, Riquelme JA, et al. Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J Cardiovasc Pharmacol. 2014;63(6):477–87.

    Article  CAS  PubMed  Google Scholar 

  57. Pennanen C, Parra V, Lopez-Crisosto C, Morales PE, Del Campo A, Gutierrez T, et al. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci. 2014;127(Pt 12):2659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2(5):e000461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochem Biokhim. 2005;70(2):200–14.

    Article  CAS  Google Scholar 

  60. Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977;180(2):248–57.

    Article  CAS  PubMed  Google Scholar 

  61. Sabri A, Hughie HH, Lucchesi PA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal. 2003;5(6):731–40.

    Article  CAS  PubMed  Google Scholar 

  62. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol. 2001;280(1):C53–60.

    CAS  PubMed  Google Scholar 

  63. Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes. 2016;65(1):255–68.

    CAS  PubMed  Google Scholar 

  64. Huang Q, Zhou HJ, Zhang H, Huang Y, Hinojosa-Kirschenbaum F, Fan P, et al. Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation. 2015;131(12):1082–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Akhmedov AT, Rybin V, Marin-Garcia J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev. 2015;20(2):227–49.

    Article  CAS  PubMed  Google Scholar 

  66. Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, et al. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun. 2001;289(4):901–7.

    Article  CAS  PubMed  Google Scholar 

  67. Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol. 2001;37(2):676–85.

    Article  CAS  PubMed  Google Scholar 

  68. Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist- induced cardiomyocyte hypertrophy. Circulation. 2002;105(4):509–15.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ. Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol. 2003;42(10):1845–54.

    Article  CAS  PubMed  Google Scholar 

  70. Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail. 2002;8(3):132–40.

    Article  CAS  PubMed  Google Scholar 

  71. Spinale FG. Bioactive peptide signaling within the myocardial interstitium and the matrix metalloproteinases. Circ Res. 2002;91(12):1082–4.

    Article  CAS  PubMed  Google Scholar 

  72. Ghule AE, Kandhare AD, Jadhav SS, Zanwar AA, Bodhankar SL. Omega-3-fatty acid adds to the protective effect of flax lignan concentrate in pressure overload-induced myocardial hypertrophy in rats via modulation of oxidative stress and apoptosis. Int Immunopharmacol. 2015;28(1):751–63.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou T, Chuang CC, Zuo L. Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int. 2015;2015:864946.

    PubMed  PubMed Central  Google Scholar 

  74. Li JZ, Yu SY, Mo D, Tang XN, Shao QR. Picroside II inhibits hypoxia/reoxygenation-induced cardiomyocyte apoptosis by ameliorating mitochondrial function through a mecha-nism involving a decrease in reactive oxygen species production. Int J Mol Med. 2015;35(2):446–52.

    Google Scholar 

  75. Xu J, Hu H, Chen B, Yue R, Zhou Z, Liu Y, et al. Lycopene protects against hypoxia/reoxygenation injury by alleviating ER stress induced apoptosis in neonatal mouse cardiomyocytes. PLoS One. 2015;10(8):e0136443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhu Z, Zhu J, Zhao X, Yang K, Lu L, Zhang F, et al. All-trans retinoic acid ameliorates myocardial ischemia/reperfusion injury by reducing cardiomyocyte apoptosis. PLoS One. 2015;10(7):e0133414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hao J, Li WW, Du H, Zhao ZF, Liu F, Lu JC, et al. Role of vitamin C in cardioprotection of ischemia/reperfusion injury by activation of mitochondrial KATP channel. Chem Pharm Bull. 2016;64(6):548–57.

    Article  CAS  PubMed  Google Scholar 

  78. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90.

    Article  CAS  PubMed  Google Scholar 

  79. Anilkumar N, Sirker A, Shah AM. Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci. 2009;14:3168–87.

    Article  CAS  Google Scholar 

  80. Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J: Off Publ Fed Am Soc Exp Biol. 2001;15(3):833–45.

    Article  CAS  Google Scholar 

  81. Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell 3rd RR. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol. 2011;67(6):1381–8.

    Article  CAS  PubMed  Google Scholar 

  82. Sastre-Serra J, Valle A, Company MM, Garau I, Oliver J, Roca P. Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer. Free Radic Biol Med. 2010;48(4):506–12.

    Article  CAS  PubMed  Google Scholar 

  83. Modriansky M, Gabrielova E. Uncouple my heart: the benefits of inefficiency. J Bioenerg Biomembr. 2009;41(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  84. Noma T, Nishiyama A, Mizushige K, Murakami K, Tsuji T, Kohno M, et al. Possible role of uncoupling protein in regulation of myocardial energy metabolism in aortic regurgitation model rats. FASEB J: Off Publ Fed Am Soc Exp Biol. 2001;15(7):1206–8.

    CAS  Google Scholar 

  85. Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, et al. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol. 2008;44(4):694–700.

    Article  CAS  PubMed  Google Scholar 

  86. Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85(9):856–66.

    Article  CAS  PubMed  Google Scholar 

  87. Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S. Mitochondrial calpain system: an overview. Arch Biochem Biophys. 2010;495(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  88. Marin-Garcia J. Mitochondrial DNA repair: a novel therapeutic target for heart failure. Heart Fail Rev. 2016;21(5):475–87.

    Article  CAS  PubMed  Google Scholar 

  89. Jacob SF, Wurstle ML, Delgado ME, Rehm M. An analysis of the truncated bid- and ROS- dependent spatial propagation of mitochondrial permeabilization waves during apoptosis. J Biol Chem. 2016;291(9):4603–13.

    Article  CAS  PubMed  Google Scholar 

  90. Kinnally KW, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis: Int J Programmed Cell Death. 2007;12(5):857–68.

    Article  CAS  Google Scholar 

  91. Sun Y, Zhang Y, Yan M, Wu Y, Zheng X. B-type natriuretic peptide-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition. Biol Pharm Bull. 2009;32(9):1545–51.

    Article  CAS  PubMed  Google Scholar 

  92. Ikeda G, Matoba T, Nakano Y, Nagaoka K, Ishikita A, Nakano K, et al. Nanoparticle-mediated targeting of cyclosporine a enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Sci Rep. 2016;6:20467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thompson J, Hu Y, Lesnefsky EJ, Chen Q. Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release. Am J Physiol Heart Circ Physiol. 2016;310(3):H376–84.

    Article  PubMed  Google Scholar 

  94. Gatica D, Chiong M, Lavandero S, Klionsky DJ. Molecular mechanisms of autophagy in the cardiovascular system. Circ Res. 2015;116(3):456–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saito T, Sadoshima J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 2015;116(8):1477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8.

    Article  CAS  PubMed  Google Scholar 

  97. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early- onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60.

    Article  CAS  PubMed  Google Scholar 

  98. Lee Y, Lee HY, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1- mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2011;301(5):H1924–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A. 2011;108(23):9572–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Min Jin SM, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125:795–9.

    Article  CAS  Google Scholar 

  101. Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 2013;288(2):915–26.

    Article  CAS  PubMed  Google Scholar 

  102. Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation–contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil. 2017 (in press); doi: 10.1007/s10974-017-9470-z

  103. Shao CH, Rozanski GJ, Nagai R, Stockdale FE, Patel KP, Wang M, et al. Carbonylation of myosin heavy chains in rat heart during diabetes. Biochem Pharmacol. 2010;80(2):205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kurian GA, Berenshtein E, Saada A, Chevion M. Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem. 2012;30(1):83–94.

    Google Scholar 

  106. Kanamori H, Takemura G, Goto K, Maruyama R, Tsujimoto A, Ogino A, et al. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res. 2011;91(2):330–9.

    Article  CAS  PubMed  Google Scholar 

  107. Hoshino A, Matoba S, Iwai-Kanai E, Nakamura H, Kimata M, Nakaoka M, et al. p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol. 2012;52(1):175–84.

    Article  CAS  PubMed  Google Scholar 

  108. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia – reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065–89.

    Article  CAS  PubMed  Google Scholar 

  109. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109(13):1580–9.

    Article  PubMed  Google Scholar 

  110. Zhou LY, Liu JP, Wang K, Gao J, Ding SL, Jiao JQ, et al. Mitochondrial function in cardiac hypertrophy. Int J Cardiol. 2013;167(4):1118–25.

    Article  PubMed  Google Scholar 

  111. Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun. 2004;322(4):1178–91.

    Article  CAS  PubMed  Google Scholar 

  112. Maier LS. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the heart. Adv Exp Med Biol. 2012;740:685–702.

    Article  CAS  PubMed  Google Scholar 

  113. Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, et al. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation. 2009;119(18):2435–43.

    Article  CAS  PubMed  Google Scholar 

  114. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117(3):568–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res. 2011;109(1):86–96.

    Article  CAS  PubMed  Google Scholar 

  117. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–74.

    Article  CAS  PubMed  Google Scholar 

  118. Willems IE, Havenith MG, De Mey JG, Daemen MJ. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994;145(4):868–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Leslie KO, Taatjes DJ, Schwarz J, von Turkovich M, Low RB. Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am J Pathol. 1991;139(1):207–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Xie M, Burchfield JS, Hill JA. Pathological ventricular remodeling: therapies: part 2 of 2. Circulation. 2013;128(9):1021–30.

    Article  PubMed  Google Scholar 

  121. Widder JD, Fraccarollo D, Galuppo P, Hansen JM, Jones DP, Ertl G, et al. Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2. Hypertension. 2009;54(2):338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97(9):900–7.

    Article  CAS  PubMed  Google Scholar 

  123. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J Biol Chem. 2013;288(2):770–7.

    Article  CAS  PubMed  Google Scholar 

  125. Fraccarollo D, Galuppo P, Neuser J, Bauersachs J, Widder JD. Pentaerythritol tetranitrate targeting myocardial reactive oxygen species production improves left ventricular remodeling and function in rats with ischemic heart failure. Hypertension. 2015;66(5):978–87.

    Article  CAS  PubMed  Google Scholar 

  126. Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol. 1995;27(6):1281–92.

    Article  CAS  PubMed  Google Scholar 

  127. Tyagi SC, Kumar SG, Haas SJ, Reddy HK, Voelker DJ, Hayden MR, et al. Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol. 1996;28(7):1415–28.

    Article  CAS  PubMed  Google Scholar 

  128. Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 1996;10(9):1077–83.

    CAS  PubMed  Google Scholar 

  129. Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R. Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species. J Hypertens. 2006;24(4):757–66.

    Article  CAS  PubMed  Google Scholar 

  130. Shi J, Dai W, Hale SL, Brown DA, Wang M, Han X, et al. Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sci. 2015;141:170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pei H, Du J, Song X, He L, Zhang Y, Li X, et al. Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med. 2016;97:408–17.

    Article  CAS  PubMed  Google Scholar 

  132. Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes – an update. Biochim Biophys Acta. 2016;1863(5):971–83.

    Article  CAS  PubMed  Google Scholar 

  133. Ansari SB, Kurian GA. Hydrogen sulfide modulates sub-cellular susceptibility to oxidative stress induced by myocardial ischemic reperfusion injury. Chem Biol Interact. 2016;252:28–35.

    Article  CAS  PubMed  Google Scholar 

  134. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT, et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22(4):476–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Norton M, Ng AC, Baird S, Dumoulin A, Shutt T, Mah N, et al. ROMO1 is an essential redox- dependent regulator of mitochondrial dynamics. Sci Signal. 2014;7(310):ra10.

    Article  PubMed  CAS  Google Scholar 

  136. Loor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD, et al. Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim Biophys Acta. 2011;1813(7):1382–94.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang P, Lu Y, Yu D, Zhang D, Hu W. TRAP1 provides protection against myocardial ischemia-reperfusion injury by ameliorating mitochondrial dysfunction. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol. 2015;36(5):2072–82.

    Article  CAS  Google Scholar 

  138. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  CAS  PubMed  Google Scholar 

  139. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia- reperfusion injury. Physiol Rev. 2008;88(2):581–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    Article  CAS  PubMed  Google Scholar 

  141. Murphy E, Steenbergen C. Ion transport and energetics during cell death and protection. Physiology (Bethesda). 2008;23:115–23.

    Google Scholar 

  142. Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017 (in press). doi: 10.1113/JP272781.

  143. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11(6):1373–414.

    Google Scholar 

  144. Bernardi P, Rasola A, Forte M, Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015;95(4):1111–55.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J. 2006;394(Pt 3):627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010;38(4):841–60.

    Article  CAS  PubMed  Google Scholar 

  147. Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes. 2003;52(3):777–83.

    Article  CAS  PubMed  Google Scholar 

  148. Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D, Powell MJ, et al. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R186–200.

    Article  CAS  PubMed  Google Scholar 

  149. Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol. 2011;8(5):292–300.

    Article  CAS  PubMed  Google Scholar 

  150. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mewton N, Croisille P, Gahide G, Rioufol G, Bonnefoy E, Sanchez I, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol. 2010;55(12):1200–5.

    Article  CAS  PubMed  Google Scholar 

  152. Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, Koomalsingh KJ, et al. Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective Peptide. J Am Heart Assoc. 2012;1(3):e001644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798–805.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Comision Nacional de Investigacion Cientıfica y Tecnologica (CONICYT), Chile (FONDAP 15130011 to S.L., Postdoctoral FONDECYT 3160549 to P.A.). N.T. is recipient of a PhD fellowship from CONICYT, Chile. National Institutes of Health U54 HD087351 and HL098051 to B.A.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beverly A. Rothermel or Sergio Lavandero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Torrealba, N., Aranguiz, P., Alonso, C., Rothermel, B.A., Lavandero, S. (2017). Mitochondria in Structural and Functional Cardiac Remodeling. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_15

Download citation

Publish with us

Policies and ethics