Skip to main content

SkiROS—A Skill-Based Robot Control Platform on Top of ROS

  • Chapter
  • First Online:
Robot Operating System (ROS)

Abstract

The development of cognitive robots in ROS still lacks the support of some key components: a knowledge integration framework and a framework for autonomous mission execution. In this research chapter, we will discuss our skill-based platform SkiROS, that was developed on top of ROS in order to organize robot knowledge and its behavior. We will show how SkiROS offers the possibility to integrate different functionalities in form of skill ‘apps’ and how SkiROS offers services for integrating these skill-apps into a consistent workspace. Furthermore, we will show how these skill-apps can be automatically executed based on autonomous, goal-directed task planning. SkiROS helps the developers to program and port their high-level code over a heterogeneous range of robots, meanwhile the minimal Graphical User Interface (GUI) allows non-expert users to start and supervise the execution. As an application example, we present how SkiROS was used to vertically integrate a robot into the manufacturing system of PSA Peugeot-Citroën. We will discuss the characteristics of the SkiROS architecture which makes it not limited to the automotive industry but flexible enough to be used in other application areas as well. SkiROS has been developed on Ubuntu 14.04 LTS and ROS indigo and it can be downloaded at https://github.com/frovida/skiros. A demonstration video is also available at https://youtu.be/mo7UbwXW5W0.

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 610917 (STAMINA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://pwp.gatech.edu/hrl/ros-commander-rosco-behavior-creation-for-home-robots/.

  2. 2.

    http://wiki.ros.org/smach.

  3. 3.

    http://wiki.ros.org/pi_trees.

  4. 4.

    https://github.com/KCL-Planning/ROSPlan.

  5. 5.

    http://wiki.ros.org/pluginlib.

  6. 6.

    e.g. http://protegewiki.stanford.edu/wiki/Protege4GettingStarted.

  7. 7.

    http://wiki.ros.org/nodelet.

  8. 8.

    http://www.fast-downward.org/.

  9. 9.

    gki.informatik.uni-freiburg.de/tools/tfd/.

  10. 10.

    http://moveit.ros.org.

  11. 11.

    http://rosindustrial.org/.

References

  1. Pedersen, M.R., L. Nalpantidis, R.S. Andersen, C. Schou, S. Bøgh, V. Krüger, and O. Madsen. 2015. Robot skills for manufacturing: From concept to industrial deployment. Robotics and Computer-Integrated Manufacturing. Available online.

    Google Scholar 

  2. Holz, D., A. Topalidou-Kyniazopoulou, F. Rovida, M.R. Pedersen, V. Krüger, and S. Behnke. 2015. A skill-based system for object perception and manipulation for automating kitting tasks. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).

    Google Scholar 

  3. Holz, D., A. Topalidou-Kyniazopoulou, J. Stückler, and S. Behnke. 2015. Real-time object detection, localization and verification for fast robotic depalletizing. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 1459–1466.

    Google Scholar 

  4. McDermott, D. 2000. The 1998 ai planning systems competition. Artifical Intelligence Magazine 21 (2): 35–55.

    Google Scholar 

  5. Kortenkamp, D., and R. Simmons. 2007. Robotic systems architectures and programming. In Springer Handbook of Robotics, ed. B. Siciliano, and O. Khatib, 187–206. Heidelberg: Springer.

    Google Scholar 

  6. Arkin, R.C. 1998. Behavior-based Robotics, 1st ed. Cambridge: MIT Press.

    Google Scholar 

  7. Brooks, R.A. 1986. A robust layered control system for a mobile robot. Journal of Robotics and Automation 2 (1): 14–23.

    Article  Google Scholar 

  8. Firby, R.J. 1989. Adaptive Execution in Complex Dynamic Worlds. Ph.D. thesis, Yale University, USA.

    Google Scholar 

  9. Gat, E. 1998. On three-layer architectures. In Artificial Intelligence and Mobile Robots, MIT Press.

    Google Scholar 

  10. Ferrein, A., and G. Lakemeyer. 2008. Logic-based robot control in highly dynamic domains. Robotics and Autonomous Systems 56 (11): 980–991.

    Article  Google Scholar 

  11. Bensalem, S., and M. Gallien. 2009. Toward a more dependable software architecture for autonomous robots. IEEE Robotics and Automation Magazine 1–11.

    Google Scholar 

  12. Magnenat, S. 2010. Software integration in mobile robotics, a science to scale up machine intelligence. Ph.D. thesis, École polytechnique fédérale de Lausanne, Switzerland.

    Google Scholar 

  13. Vernon, D., C. von Hofsten, and L. Fadiga. 2010. A Roadmap for Cognitive Development in Humanoid Robots. Heidelberg: Springer.

    Google Scholar 

  14. Balakirsky, S., Z. Kootbally, T. Kramer, A. Pietromartire, C. Schlenoff, and S. Gupta. 2013. Knowledge driven robotics for kitting applications. Volume 61., Elsevier B.V. 1205–1214

    Google Scholar 

  15. Björkelund, A., J. Malec, K. Nilsson, P. Nugues, and H. Bruyninckx. 2012. Knowledge for Intelligent Industrial Robots. In AAAI Spring Symposium on Designing Intelligent Robots: Reintegrating AI.

    Google Scholar 

  16. Stenmark, M., and J. Malec. 2013. Knowledge-based industrial robotics. In Scandinavian Conference on Artificial Intelligence.

    Google Scholar 

  17. Tenorth, M., and M. Beetz. 2013. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. The International Journal of Robotics Research 32 (5): 566–590.

    Article  Google Scholar 

  18. Beetz, M., L. Mösenlechner, and M. Tenorth. 2010. CRAM - A Cognitive Robot Abstract Machine for everyday manipulation in human environments. In IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 1012–1017.

    Google Scholar 

  19. Rovida, F., and V. Krüger. 2015. Design and development of a software architecture for autonomous mobile manipulators in industrial environments. In 2015 IEEE International Conference on Industrial Technology (ICIT).

    Google Scholar 

  20. Huckaby, J. 2014. Knowledge Transfer in Robot Manipulation Tasks. Ph.D. thesis, Georgia Institute of Technology, USA.

    Google Scholar 

  21. Bøgh, S., O.S. Nielsen, M.R. Pedersen, V. Krüger, and O. Madsen. 2012. Does your robot have skills? In The 43rd International Symposium of Robotics (ISR).

    Google Scholar 

  22. Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, and L.A. Stein. 2004. OWL Web Ontology Language reference, 10 Feb 2004. http://www.w3.org/TR/owl-ref/.

  23. Lortal, G., S. Dhouib, and S. Gérard. 2011. Integrating ontological domain knowledge into a robotic DSL. In Models in Software Engineering, ed. J. Dingel, and A. Solberg, 401–414. Heidelberg: Springer.

    Chapter  Google Scholar 

  24. Krüger, V., A. Chazoule, M. Crosby, A. Lasnier, M.R. Pedersen, F. Rovida, L. Nalpantidis, R.P.A. Petrick, C. Toscano, and G. Veiga. 2016. A vertical and cyber-physical integration of cognitive robots in manufacturing. Proceedings of the IEEE 104 (5): 1114–1127.

    Article  Google Scholar 

  25. Crosby, M., F. Rovida, M. Pedersen, R. Petrick, and V. Krueger. 2016. Planning for robots with skills. In Planning and Robotics (PlanRob) workshop at the International Conference on Automated Planning and Scheduling (ICAPS).

    Google Scholar 

  26. Sprunk, C., J. Rowekamper, G. Parent, L. Spinello, G.D. Tipaldi, W. Burgard, and M. Jalobeanu. 2014. An experimental protocol for benchmarking robotic indoor navigation. In ISER.

    Google Scholar 

  27. Holz, D., and S. Behnke. 2016. Fast edge-based detection and localization of transport boxes and pallets in rgb-d images for mobile robot bin picking. In Proceedings of the 47th International Symposium on Robotics (ISR), Munich, Germany.

    Google Scholar 

  28. Polydoros, A.S., B. Großmann, F. Rovida, L. Nalpantidis, and V. Krüger. 2016. Accurate and versatile automation of industrial kitting operations with skiros. In 17th Conference Towards Autonomous Robotic Systems (TAROS), (Sheffield, UK).

    Google Scholar 

  29. Stückler, J., and S. Behnke. 2014. Multi-resolution surfel maps for efficient dense 3D modeling and tracking. Journal of Visual Communication and Image Representation 25 (1): 137–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Rovida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rovida, F. et al. (2017). SkiROS—A Skill-Based Robot Control Platform on Top of ROS. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 707. Springer, Cham. https://doi.org/10.1007/978-3-319-54927-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54927-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54926-2

  • Online ISBN: 978-3-319-54927-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics