Skip to main content

Nonlinear Prediction Surfaces for Estimating the Structural Response of Naval Vessels

  • Conference paper
  • First Online:
  • 1398 Accesses

Abstract

Structural health monitoring (SHM) of naval vessels is essential for assessing the performance of the structure and the fatigue damage accrued over the service life. The direct integration of available SHM data may be useful in reducing the epistemic uncertainties arising from inaccuracies in the modeling and the variations in the as-built structural configuration from the initial design. Based on SHM data, fatigue damage indices can be predicted by implementing cell based approaches, such as the lifetime weighted sea method, that discretizes the operational conditions of the vessel into cells with specific wave height, heading angle, and speed. The integration of SHM data into the fatigue assessment using lifetime weighted sea method requires a complete set of data that covers the whole operational spectrum. However, technical malfunctions or discrete monitoring practices generate incomplete data sets. This paper proposes nonlinear prediction surfaces to estimate the ship structural response in unobserved cells based on available cell data. Expected theoretical variations of the structural response to changes in wave height, heading angle, and vessel speed are integrated in the development of the prediction surface. The proposed methodology is illustrated on the SHM data from a high speed aluminum catamaran.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lynch, J.P., Loh, K.J.A.: Summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Digest. 38(2), 91–130 (2006)

    Article  Google Scholar 

  2. Zhu, J., Collette, M.A.: Bayesian approach for shipboard lifetime wave load spectrum updating. Struct. Infrastruct. Eng. 13(2), 298–312 (2016)

    Article  Google Scholar 

  3. Kurata, M., Kim, J.H., Lynch, J.P., Law, K.H. and Salvino, L.W.: A probabilistic model updating algorithm for fatigue damage detection in aluminum hull structures. In: ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. 741–750. American Society of Mechanical Engineers, New York (2010)

    Google Scholar 

  4. Zhu, B., Frangopol, D.M.: Reliability assessment of ship structures using Bayesian updating. Eng. Struct. 56, 1836–1847 (2013)

    Article  Google Scholar 

  5. Frangopol, D.M., Strauss, A., Kim, S.: Bridge reliability assessment based on monitoring. J. Bridg. Eng. 13(3), 258–270 (2008)

    Article  Google Scholar 

  6. Hughes, O.F.: Ship Structural Design: A Rationally-Based, Computer-Aided, Optimization Approach. Wiley-Interscience, Jersy City (1983)

    Google Scholar 

  7. Sikora, J.P., Dinsenbacher, A., Beach, J.E.: A Method for estimating lifetime loads and fatigue lives for swath and conventional monohull ships. Nav. Eng. J. 95(3), 63–85 (1983)

    Article  Google Scholar 

  8. Kim, S., Frangopol, D.M.: Cost-effective lifetime structural health monitoring based on availability. J. Struct. Eng. 137(1), 22–33 (2010)

    Article  Google Scholar 

  9. Iphar, C., Napoli, A. and Cyril, R.: Data quality assessment for maritime situation awareness. In: ISSDQ 2015-The 9th International Symposium on Spatial Data Quality, vol. 2, pp. 291–296. (2015).

    Google Scholar 

  10. Zhu, J.: Life cycle fatigue management for high-speed vessel using Bayesian updating approaches. Ph.D. thesis, Dept. of Naval Architecture and Marine Engineering, University of Michigan, Michigan, USA (2014)

    Google Scholar 

  11. Mondoro, A., Soliman, M., Frangopol, D.M.: Prediction of structural response of naval vessels based on available structural health monitoring data. Ocean Eng. 125, 295–307 (2016)

    Article  Google Scholar 

  12. Pierson Jr., W.J., Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. J. Geophys. Res. 69(24), 5181–5190 (1963)

    Article  Google Scholar 

  13. Komen, G.J., Hasselmann, K., Hasselmann, K.: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14(8), 1271–1285 (1984)

    Article  Google Scholar 

  14. Jensen, J.J., Mansour, A.E.: Estimation of ship long-term wave-induced bending moment using closed-form expressions. R. Inst. Nav. Archit. Trans. Part A. Int. J. Marit. Eng. 41–55 (2002)

    Google Scholar 

  15. Jensen, J.J., Mansour, A.E., Olsen, A.S.: Estimation of ship motions using closed-form expressions. Ocean Eng. 31(1), 61–85 (2004)

    Article  Google Scholar 

  16. Brady, T., Bachman, R., Donnelly, M., Griggs, D.: HSV-2 Swift Instrumentation and Technical Trials Plan. Naval Surface Warfare Center, Carderock Division (NSWCCD), West Bethesda (2004)

    Google Scholar 

Download references

Acknowledgments

The support by grants from (a) the National Science Foundation (NSF) Award CMMI-1537926, (b) the U.S. Office of Naval Research (ONR) Awards N00014-08-1-0188, N00014-12-1-0023, and N00014-16-1-2299, and (c) the National Aeronautics and Space Administration (NASA) Award NNX10AJ20G is gratefully acknowledged. The opinions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan M. Frangopol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Mondoro, A., Soliman, M., Frangopol, D.M. (2017). Nonlinear Prediction Surfaces for Estimating the Structural Response of Naval Vessels. In: Barthorpe, R., Platz, R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54858-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54858-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54857-9

  • Online ISBN: 978-3-319-54858-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics