Skip to main content

Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Abstract

In this paper we explore the problem of fitting a 3D morphable model to single face images using only sparse geometric features (edges and landmark points). Previous approaches to this problem are based on nonlinear optimisation of an edge-derived cost that can be viewed as forming soft correspondences between model and image edges. We propose a novel approach, that explicitly computes hard correspondences. The resulting objective function is non-convex but we show that a good initialisation can be obtained efficiently using alternating linear least squares in a manner similar to the iterated closest point algorithm. We present experimental results on both synthetic and real images and show that our approach outperforms methods that use soft correspondence and other recent methods that rely solely on geometric features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Matlab implementation: github.com/waps101/3DMM_edges.

References

  1. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1063–1074 (2003)

    Article  Google Scholar 

  2. Ichim, A.E., Bouaziz, S., Pauly, M.: Dynamic 3D avatar creation from hand-held video input. ACM Trans. Graph. 34, 45 (2015)

    Article  Google Scholar 

  3. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH (1999)

    Google Scholar 

  4. Romdhani, S., Vetter, T.: Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. In: CVPR (2005)

    Google Scholar 

  5. Huber, P., Feng, Z., Christmas, W., Kittler, J., Rätsch, M.: Fitting 3D morphable models using local features. In: ICIP (2015)

    Google Scholar 

  6. Amberg, B., Blake, A., Fitzgibbon, A., Romdhani, S., Vetter, T.: Reconstructing high quality face-surfaces using model based stereo. In: ICCV (2007)

    Google Scholar 

  7. Keller, M., Knothe, R., Vetter, T.: 3D reconstruction of human faces from occluding contours. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 261–273. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71457-6_24

    Chapter  Google Scholar 

  8. Breuer, P., Kim, K., Kienzle, W., Schölkopf, B., Blanz, V.: Automatic 3D face reconstruction from single images or video. In: Proceedings of the FG, pp. 1–8 (2008)

    Google Scholar 

  9. Aldrian, O., Smith, W.A.P.: Inverse rendering of faces with a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1080–1093 (2013)

    Article  Google Scholar 

  10. Amberg, B., Vetter, T.: Optimal landmark detection using shape models and branch and bound. In: Proceedings of the ICCV (2011)

    Google Scholar 

  11. Schönborn, S., Forster, A., Egger, B., Vetter, T.: A monte carlo strategy to integrate detection and model-based face analysis. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 101–110. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_11

    Chapter  Google Scholar 

  12. Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)

    Article  Google Scholar 

  13. Atkinson, G.A., Smith, M.L., Smith, L.N., Farooq, A.R.: Facial geometry estimation using photometric stereo and profile views. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1–11. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01793-3_1

    Chapter  Google Scholar 

  14. Moghaddam, B., Lee, J., Pfister, H., Machiraju, R.: Model-based 3D face capture with shape-from-silhouettes. In: Proceedings of the FG (2003)

    Google Scholar 

  15. Lüthi, M., Albrecht, T., Vetter, T.: Probabilistic modeling and visualization of the flexibility in morphable models. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces 2009. LNCS, vol. 5654, pp. 251–264. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03596-8_14

    Chapter  Google Scholar 

  16. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2003)

    Article  Google Scholar 

  17. Cashman, T.J., Fitzgibbon, A.W.: What shape are dolphins? Building 3D morphable models from 2D images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 232–244 (2013)

    Article  Google Scholar 

  18. Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: Proceedings of the CVPR, pp. 787–796 (2015)

    Google Scholar 

  19. Sánchez-Escobedo, D., Castelán, M., Smith, W.: Statistical 3D face shape estimation from occluding contours. Comput. Vis. Image Underst. 142, 111–124 (2016)

    Article  Google Scholar 

  20. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  21. Suwajanakorn, S., Kemelmacher-Shlizerman, I., Seitz, S.M.: Total moving face reconstruction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 796–812. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10593-2_52

    Google Scholar 

  22. Cao, C., Bradley, D., Zhou, K., Beeler, T.: Real-time high-fidelity facial performance capture. ACM Trans. Graph. 34, 46 (2015)

    Article  Google Scholar 

  23. Dementhon, D.F., Davis, L.S.: Model-based object pose in 25 lines of code. Int. J. Comput. Vis. 15, 123–141 (1995)

    Article  Google Scholar 

  24. Brunton, A., Salazar, A., Bolkart, T., Wuhrer, S.: Review of statistical shape spaces for 3D data with comparative analysis for human faces. Comput. Vis. Image Underst. 128, 1–17 (2014)

    Article  Google Scholar 

  25. Coleman, T., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: Proceedings of the CVPR (2012)

    Google Scholar 

  27. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 155–210. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: Proceedings of the AVSS (2009)

    Google Scholar 

  29. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1615–1618 (2003)

    Article  Google Scholar 

  30. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  31. David, P., DeMenthon, D., Duraiswami, R., Samet, H.: SoftPOSIT: simultaneous pose and correspondence determination. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 698–714. Springer, Heidelberg (2002). doi:10.1007/3-540-47977-5_46

    Chapter  Google Scholar 

  32. Moreno-Noguer, F., Lepetit, V., Fua, P.: Pose priors for simultaneously solving alignment and correspondence. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 405–418. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_30

    Chapter  Google Scholar 

  33. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of the 3DIM (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Bas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bas, A., Smith, W.A.P., Bolkart, T., Wuhrer, S. (2017). Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics