Skip to main content

Progress in Nanomaterials Applications for Water Purification

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

The exploration on nanomaterials and their fascinating and enhanced properties has implicated the focusing on their applications embracing a wide range of processes on nanometer scale. In this perspective, nanotechnology  in water treatment applications is offering  and presenting now new approaches to overcome the limitations of the traditional treatment technologies. This chapter describes several types of nanomaterials that could be used in wastewater treatment underlining their advantages with respect the traditional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Siegel (1994).

  2. 2.

    Tang et al. (2013).

  3. 3.

    Bavasso et al. (2016).

  4. 4.

    OECD Report, Opportunities and risks of Nanotechnologies, www.oecd.org/science/nanosafety/37770473.pdf, Stevens and George (2005).

  5. 5.

    Mueller et al. (2012).

  6. 6.

    Karn et al. (2009).

  7. 7.

    Lacinova et al. (2012).

  8. 8.

    Zhang (2003).

  9. 9.

    Amin et al. (2014).

  10. 10.

    Ghasemzadeh et al. (2014).

  11. 11.

    Rajan (2011).

  12. 12.

    Crespi et al. (2016).

  13. 13.

    Kim et al. (2012).

  14. 14.

    O’Carroll et al. (2013).

  15. 15.

    Kim et al. (2007).

  16. 16.

    Xiu et al. (2011).

  17. 17.

    Liau et al. (1997).

  18. 18.

    Danilczuk et al. (2006).

  19. 19.

    Pal et al. (2007).

  20. 20.

    Makhluf et al. (2005).

  21. 21.

    Morones et al. (2005).

  22. 22.

    Balogh et al. (2001).

  23. 23.

    Chen et al. (2003).

  24. 24.

    Botes and Cloete (2010).

  25. 25.

    Peter-Varbanets et al. (2009).

  26. 26.

    Han et al. (2016).

  27. 27.

    Ohtani (2013).

  28. 28.

    Vaiano et al. (2016).

  29. 29.

    Gombac et al. (2010).

  30. 30.

    Vaiano et al. (2015).

  31. 31.

    Carraro et al. (2014).

  32. 32.

    Montini et al. (2011).

  33. 33.

    Clarizi et al. (2016).

  34. 34.

    https://csiropedia.csiro.au/sirofloc/.

  35. 35.

    Zhu et al. (2013).

  36. 36.

    Ngomsik et al. (2005).

  37. 37.

    Kaur et al. (2014).

  38. 38.

    Ambashta et al. (2010).

  39. 39.

    Mehta et al. (2015).

  40. 40.

    Bae and Chung (2012).

  41. 41.

    Liu et al. (2012).

  42. 42.

    Huang and Chen (2009).

  43. 43.

    Nurmi et al. (2005).

  44. 44.

    Shen et al. (2009).

  45. 45.

    de Caprariis et al. (2012).

  46. 46.

    Vaiano et al. (2016).

  47. 47.

    Montesinos et al. (2014).

  48. 48.

    Ngomsik et al. (2005).

  49. 49.

    Ambashta and Sillanpää (2010).

  50. 50.

    Liu et al. (2008).

  51. 51.

    Girginova et al. (2010).

  52. 52.

    Clark and Keller (2012).

  53. 53.

    Wang et al. (2008).

  54. 54.

    Liu et al. (2009).

  55. 55.

    Zhang et al. (2010).

  56. 56.

    Shirinova et al. (2016).

  57. 57.

    Reddy and Yun (2016).

  58. 58.

    Sato (1986).

  59. 59.

    Rizzo et al. (2014).

  60. 60.

    Vaiano et al. (2015).

  61. 61.

    Miranda et al. (2016).

  62. 62.

    Sacco (2015).

  63. 63.

    Vaiano et al. (2015).

  64. 64.

    Sacco et al. (2015).

  65. 65.

    Sacco et al. (2015).

  66. 66.

    Vaiano et al. (2014).

  67. 67.

    Kamat et al. (2002).

  68. 68.

    Ullah and Dutta (2008).

  69. 69.

    Lam et al. (2013).

  70. 70.

    Iervolino et al. (2016).

  71. 71.

    Li et al. (2005).

  72. 72.

    Wang et al. (2010).

  73. 73.

    Wang et al. (2013).

  74. 74.

    Musico et al. (2014).

  75. 75.

    Santos et al. (2012).

  76. 76.

    Smith et al. (2014).

  77. 77.

    Yang et al. (2011).

  78. 78.

    Madadrang et al. (2012).

  79. 79.

    Crini (2005).

  80. 80.

    Bhatnagar and Sillanpa (2011).

  81. 81.

    Eighmy et al. (1992).

  82. 82.

    Brady-Estévez et al. (2008).

  83. 83.

    Mauter and Elimelech (2008).

  84. 84.

    Li et al. (2008).

  85. 85.

    Upadhyayula and Gadhamshetty (2010).

  86. 86.

    Vatanpour et al. (2011).

  87. 87.

    Amini et al. (2013).

  88. 88.

    Mauter and Elimelech (2008).

  89. 89.

    Choi et al. (2006).

  90. 90.

    Joshi et al. (2014).

  91. 91.

    Hu et al. (2010).

  92. 92.

    Liu et al. (2012).

  93. 93.

    Santos et al. (2011).

  94. 94.

    Ahmed et al. (2012).

  95. 95.

    Fan et al. (2013).

  96. 96.

    Wang et al. (2011).

  97. 97.

    Wu et al. (2011).

  98. 98.

    Tang et al. (2013).

  99. 99.

    Li et al. (2011).

  100. 100.

    Ma et al. (2014).

  101. 101.

    Saleh et al. (2011).

  102. 102.

    Fritzmann et al. (2007).

  103. 103.

    Mohsen et al. (2003).

  104. 104.

    Srivastava et al. (2004).

  105. 105.

    Li et al. (2004).

  106. 106.

    Jiang et al. (2009).

  107. 107.

    Lee et al. (2008).

References

  • Ahmed F, Santos CM, Vergara RAMV, Tria MCR, Advincula R, Rodrigues DF (2012) Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ Sci Technol 46(3):1804–1810

    Article  Google Scholar 

  • Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180:38–49

    Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Google Scholar 

  • Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435(233–41):241

    Google Scholar 

  • Bae ST, Chung KW (2012) Method for preparing engineered Mg doped ferrite superparamagnetic nano particle exhibiting Ac magnetic induction heating at high temperature and Mg doped ferrite superparamagnetic nano particles engineered by the method. In: PCT/KR 2009-007801, PCT/USA 13/141,844, PCT/Japan/2011-543434, PCTEurope/2011-234291, PCT/China/200980152546. 6, Nuri Vista Co., Ltd., Seoul, KR, 2012, assigned

    Google Scholar 

  • Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 1(1):18–21

    Google Scholar 

  • Bavasso I, Vilardi G*, Stoller M, Chianese A, Di Palma L (2016) Perspectives in nanotechnology based innovative applications for the environment. Chem Eng Trans 47:55–60

    Google Scholar 

  • Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168(2):493–504

    Google Scholar 

  • Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81

    Google Scholar 

  • Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4):481–484

    Google Scholar 

  • Mueller N, Braun J, Bruns, J, Cernik M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2012):550–558

    Google Scholar 

  • Carraro G, Maccato C, Gasparotto A, Montini T, Turner S, Lebedev OI, Gombac V, Adami G, Van Tendeloo G, Barreca D, Fornasiero P (2014) Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs. Adv Funct Mater 24:372–378

    Google Scholar 

  • Chen Y, Wang L, Jiang S, Yu HJ (2003) Study on novel antibacterial polymer materials materials (I) preparation of zeolite antibacterial agents and antibacterial polymer composite and their antibacterial properties. J Polym Mater 20(3):279–284

    Google Scholar 

  • Choi J-H, Jegal J, Kim W-N (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284(1):406–415

    Google Scholar 

  • Clarizi L, Vitiello G, Luciani G, Di Somma I, Andreozzi R, Marotta R (2016) In situ photodeposited nanoCu on TiO2 as a catalyst for hydrogen production under UV/visible radiation. Appl Catal A: Gen 518:142–149. doi:10.1016/j.apcata.2015.07.044

  • Clark KK, Keller A (2012) Investigation of two magnetic permanently confined micelle array sorbents using nonionic and cationic surfactants for the removal of PAHs and pesticides from aqueous media. Water Air Soil Pollut 223:3647–3655

    Google Scholar 

  • Crespi J, Quici N, Halac EB, Leyva AG, Ramosb CP, Mizrahi M, Requejo FG, Litter MI (2016) Removal of uranium (VI) with iron nanoparticles. CET 47

    Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70

    Google Scholar 

  • Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochimica Acta—Part A: Mole Biomole Spectro 63(1):189–191

    Google Scholar 

  • De Caprariis B, Di Rita M, Stoller M, Verdone N, Chianese A (2012) Reaction-precipitation by a spinning disc reactor: influence of hydrodynamics on nanoparticles production. Chem Eng Sci 76:73–80

    Google Scholar 

  • Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf B: Biointerface 103:523–959

    Google Scholar 

  • Fritzmann C, Löwenberg T, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis desalination. Desalination 216(1–3):1–76

    Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:471–482

    Google Scholar 

  • Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240

    Google Scholar 

  • Gombac V, Sordelli L, Montini T, Delgado JJ, Adamski A, Adami V, Cargnello V, Bernal S, Fornasiero P (2010) CuOx−TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. J Phys Chem A 114:3916–577

    Google Scholar 

  • Han Y, Liu C, Horita J, Yan W (2016) Trichloroethene hydrodechlorination by Pd–Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation Appl. Catal. B: Environ 188:77–86

    Article  Google Scholar 

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–234323

    Google Scholar 

  • Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179

    Article  Google Scholar 

  • Iervolino G, Vaiano V, Sannino D, Rizzo L, Ciambelli P (2016) Production of hydrogen from glucose by LaFeO3 based photocatalytic process during water treatment (2016). Int J Hydrogen Energy 41(2):959–966. doi:10.1016/j.ijhydene.2015.10.085

    Article  Google Scholar 

  • Jiang D-E, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024

    Google Scholar 

  • Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172):752–754

    Google Scholar 

  • Kamat PV, Huehn R, Nicolaescu R (2002) A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106(4):788–794

    Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(2009):1823–1831

    Google Scholar 

  • Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 37(14):1805–1825

    Google Scholar 

  • Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3(1):95–101

    Google Scholar 

  • Kim Y-M, Murugesan K, Chang Y-Y, Kim E-J, Chang YS (2012) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87:216–224

    Google Scholar 

  • Lacinova L, Kvapil P, Cernik M (2012) A field comparison of two reductive dechlorination (zero-valent iron and lactate) methods. Environ Technol 33(2012):741–749

    Google Scholar 

  • Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2013) Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation. Chem. Pap 67:1277–1284

    Google Scholar 

  • Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219(1–3):48–56

    Google Scholar 

  • Li L, Dong J, Nenoff TM, Lee R (2004) Desalination by reverse osmosis using MFI zeolite membranes. J Membr Sci 243(1–2):401–404

    Google Scholar 

  • Li Y-H, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4):605–609

    Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Google Scholar 

  • Li Z, Gao B, Chen GZ, Mokaya R, Sotiropoulos S, Li Puma G (2011) Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl Catal B 110:50–757

    Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    Google Scholar 

  • Liu J-F, Zhao Z-S, Jiang G-B (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954

    Google Scholar 

  • Liu Y, Li H, Lin JM (2009) Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography-mass spectrometry. Talanta 77:1037–1042

    Google Scholar 

  • Liu J, Bin Y, Matsuo M (2012) Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J Phys Chem C 116:134–143

    Google Scholar 

  • Liu F, Chung S, Oh G, Seo TS (2012) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces 4(2):922–927

    Google Scholar 

  • Ma L, Chen A, Lu J, Zhang Z, He H, Li C (2014) In situ synthesis of CNTs/Fe–Ni/TiO2 nanocomposite by fluidized bed chemical vapor deposition and the synergistic effect in photocatalysis. Particuology 14:24–32

    Google Scholar 

  • Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H et al (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater 4(3):1186–1193

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715

    Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    Google Scholar 

  • Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265

    Google Scholar 

  • Miranda AC, Lepretti M, Rizzo L, Caputo I, Vaiano V, Sacco O, Lopes WS, Sannino D (2016) Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation (2016). Sci Total Environ 554–555:1–6. doi:10.1016/j.scitotenv.2016.02.189

    Article  Google Scholar 

  • Mohsen MS, Jaber JO, Afonso MD (2003) Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 157(1–3):167

    Google Scholar 

  • Montesinos VN, Quici N, Halac EB, Leyva AG, Custo G, Bengio S, Zampieri G, Litter MI (2014) Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: understanding the Fe(III)-Cr(III) passive outer layer structure. Chem Eng J 244:569–575

    Article  Google Scholar 

  • Montini T, Gombac V, Sordelli L, Delgado JJ, Chen X, Adami G, Fornasiero P (2011) Nanostructured Cu/TiO2 photocatalysts for H2 production from ethanol and glycerol aqueous solutions. ChemCatChem 3:574

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  Google Scholar 

  • Musico, YLF, Santos C, Dalida M, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2(7):1559–1565

    Google Scholar 

  • Ngomsik A-F, Bee A, Draye M, Cote G, Cabuil V (2005) Magnetic nano-and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8:963–970

    Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230

    Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  Google Scholar 

  • Ohtani B (2013) Titania photocatalysis beyond recombination: a critical review. Catalysts 3:942

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Google Scholar 

  • Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265

    Google Scholar 

  • Rajan CS (2011) Nanotechnology in groundwater remediation. Int J Environ Sci Dev 2:1–6

    Google Scholar 

  • Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111

    Google Scholar 

  • Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl Catal B 144:369–378. doi:10.1016/j.apcatb.2013.07.033

    Article  Google Scholar 

  • Sacco O (2015) Photocatalytic oxidation of organic pollutants under visible light irradiation: from n-doped TiO2 photocatalysts to the design of a continuous fixed bed reactor. Ph.D. Thesis in Chemical Engineering, University of Salerno

    Google Scholar 

  • Sacco O, Vaiano V, Han C, Sannino D, Dionysiou DD, Ciambelli P (2015a) Long afterglow green phosphors functionalized with Fe-N doped TiO2 for the photocatalytic removal of emerging contaminants (2015). Chem Eng Trans 43:2107–2112. doi:10.3303/CET1543352

    Google Scholar 

  • Sacco O, Vaiano V, Han C, Sannino D, Dionysiou DD (2015b) Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors (2015). Appl Catal B 164:462–474. doi:10.1016/j.apcatb.2014.09.062

    Article  Google Scholar 

  • Saleh TA, Gondal MA, Drmosh QA, Yamani ZH, Al-Yamani A (2011) Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem Eng J 166(1):407–412

    Google Scholar 

  • Santos CM, Tria MCR, Vergara RAMV, Ahmed F, Advincula RC, Rodrigues DF (2011) Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun 47(31):8892–8894

    Google Scholar 

  • Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23(39):395101

    Google Scholar 

  • Sato S (1986) Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem Phys Lett 123:126–128

    Article  Google Scholar 

  • Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresource Technol 100:4139–4146

    Google Scholar 

  • Shirinova H, Di Palma L, Sarasini F, Tirillò J, Ramazanov MA, Hajiyeva F, Sannino D, Polichetti M, Galluzzi A (2016) Synthesis and characterization magnetic nanocomposites for environmental remediation. Chem Eng Trans 47:103–108

    Google Scholar 

  • Siegel RW (1994) Nanophase materials. In: Trigg GL (ed) Encyclopedia of applied physics, vol 11. VCH, Weinheim, pp 1–27

    Google Scholar 

  • Smith SC, Ahmed F, Gutierrez KM, Frigi Rodrigues D (2014) A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: potential environmental applications. Chem Eng J 240:147–154

    Google Scholar 

  • Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mater 3(9):610–614

    Google Scholar 

  • Stevens MM, George JH (2005) Science, exploring and engineering the cell surface interface. Science 310:1135–1138

    Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Wat Res 47:2613–2632

    Google Scholar 

  • Tang Y, Guo H, Xiao L, Yu S, Gao N, Wang Y (2013) Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf A Physicochem Eng Aspects 424:74–80

    Google Scholar 

  • Taylor Eighmy T, Robin Collins M, Spanos SK, Fenstermacher J (1992) Microbial populations, activities and carbon metabolism in slow sand filters. Water Res 26(10):1319–1328

    Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200

    Google Scholar 

  • Upadhyayula VKK, Gadhamshetty V (2010) Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv 28(6):802–816

    Google Scholar 

  • Vaiano V, Sacco O, Sannino D, Ciambelli P, Longo S, Venditto V, Guerra G (2014) N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. J Chem Technol Biotechnol 89(8):1175–1181. doi:10.1002/jctb.4372

    Article  Google Scholar 

  • Vaiano V, Iervolino G, Sarno G, Sannino D, Rizzo L, Mesa JJM, Hidalgo MC, Navío JA (2015) Simultaneous production of CH4 and H2 from photocatalytic reforming of glucose aqueous solution on sulfated Pd-TiO2 catalysts. Oil Gas Sci Technol 70:891–902

    Google Scholar 

  • Vaiano V, Sacco O, Sannino D, Ciambelli P (2015b) Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem Eng J 261:3–8. doi:10.1016/j.cej.2014.02.071

    Article  Google Scholar 

  • Vaiano V, Sacco O, Sannino D, Ciambelli P (2015c) Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors (2015). J Clean Prod 100:208–211. doi:10.1016/j.jclepro.2015.03.041

    Article  Google Scholar 

  • Vaiano V, Iervolino G, Sannino D, Murcia JJ, Hidalgo MC, Ciambelli P, Navío JA (2016a) Photocatalytic removal of patent blue V dye on Au–TiO2 and Pt–TiO2 catalysts. Appl Catal B 188:134–146. doi:10.1016/j.apcatb.2016.02.001

    Article  Google Scholar 

  • Vaiano V*, Saccoa V, Sannino D, Stollerb M, Ciambelli P, Chianese A (2016) Photocatalytic removal of phenol ferromagnetic N-TiO2/SiO2/Fe3O4 nanoparticles in presence of visible light irradiation. Chem Eng Trans 47:235–240

    Google Scholar 

  • Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375(1):284–294

    Google Scholar 

  • Wang S, Sun H, Ang H-M, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–47347

    Google Scholar 

  • Wang P, Shi Q, Shi Y, Clark KK, Stucky GD, Keller AA (2008) Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J Am Chem Soc 131:182–188

    Google Scholar 

  • Wang L, Zhu D, Duan L, Chen W (2010) Adsorption of single-ringed N-and S-heterocyclic aromatics on carbon nanotubes. Carbon 48(13):3906–3915

    Google Scholar 

  • Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem Eng J 173(1):92–97

    Article  Google Scholar 

  • Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J Chromatogr A 1218(44):7936–7942

    Article  Google Scholar 

  • Xiu Z-M, Ma JZ, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008

    Google Scholar 

  • Yang S-T, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359(1):24–929

    Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  Google Scholar 

  • Zhang S, Niu H, Cai Y, Shi Y (2010) Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Anal Chim Acta 665:167–175

    Google Scholar 

  • Zhu J, Wei S, Chen M, Gu H, Rapole SB, PallavkarS, Ho TC, Hopper J, Guo Z (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Sannino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sannino, D., Rizzo, L., Vaiano, V. (2017). Progress in Nanomaterials Applications for Water Purification. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_1

Download citation

Publish with us

Policies and ethics