Skip to main content

Asymmetries and Symmetries in the Mouse Oocyte and Zygote

  • Chapter
  • First Online:
Book cover Asymmetric Cell Division in Development, Differentiation and Cancer

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 61))

Abstract

Mammalian oocytes grow periodically after puberty thanks to the dialogue with their niche in the follicle. This communication between somatic and germ cells promotes the accumulation, inside the oocyte, of maternal RNAs, proteins and other molecules that will sustain the two gamete divisions and early embryo development up to its implantation. In order to preserve their stock of maternal products, oocytes from all species divide twice minimizing the volume of their daughter cells to their own benefit. For this, they undergo asymmetric divisions in size where one main objective is to locate the division spindle with its chromosomes off-centred. In this chapter, we will review how this main objective is reached with an emphasis on the role of actin microfilaments in this process in mouse oocytes, the most studied example in mammals. This chapter is subdivided into three parts: I—General features of asymmetric divisions in mouse oocytes, II—Mechanism of chromosome positioning by actin in mouse oocytes and III—Switch from asymmetric to symmetric division at the oocyte-to-embryo transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almonacid M, Terret M-É, Verlhac M-H (2014) Actin-based spindle positioning: new insights from female gametes. J Cell Sci 127:477–483

    Article  CAS  PubMed  Google Scholar 

  • Almonacid M, Ahmed WW, Bussonnier M, Mailly P, Betz T, Voituriez R, Gov NS, Verlhac M-H (2015) Active diffusion positions the nucleus in mouse oocytes. Nat Cell Biol 17:470–479

    Article  CAS  PubMed  Google Scholar 

  • Azoury J, Lee K, Georget V, Rassinier P, Leader B, Verlhac M (2008) Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol 18:1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Azoury J, Lee KW, Georget V, Hikal P, Verlhac M-H (2011) Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development 138:2903–2908

    Article  CAS  PubMed  Google Scholar 

  • Brunet S, Maro B (2007) Germinal vesicle position and meiotic maturation in mouse oocyte. Reproduction 133:1069–1072

    Article  CAS  PubMed  Google Scholar 

  • Brunet S, Verlhac MH (2011) Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update 17:68–75

    Article  PubMed  Google Scholar 

  • Cadart C, Zlotek-Zlotkiewicz E, Le Berre M, Piel M, Matthews HK (2014) Exploring the function of cell shape and size during mitosis. Dev Cell 29:159–169

    Article  CAS  PubMed  Google Scholar 

  • Cakmak H, Franciosi F, Zamah AM, Cedars MI, Conti M (2016) Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells. Proc Natl Acad Sci USA 113:2424–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calarco-Gillam PD, Siebert MC, Hubble R, Mitchison T, Kirschner M (1983) Centrosome development in early mouse embryos as defined by an autoantibody against pericentriolar material. Cell 35:621–629

    Article  CAS  PubMed  Google Scholar 

  • Chaigne A, Campillo C, Gov NS, Voituriez R, Azoury J, Umaña-Diaz C, Almonacid M, Queguiner I, Nassoy P, Sykes C et al (2013) A soft cortex is essential for asymmetric spindle positioning in mouse oocytes. Nat Cell Biol 15:958–966

    Article  CAS  PubMed  Google Scholar 

  • Chaigne A, Campillo C, Gov NS, Voituriez R, Sykes C, Verlhac MH, Terret ME (2015) A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat Commun 6:6027

    Article  CAS  PubMed  Google Scholar 

  • Chaigne A, Campillo C, Voituriez R, Gov NS, Sykes C, Verlhac M-H, Terret M-E (2016) F-actin mechanics control spindle centring in the mouse zygote. Nat Commun 7:10253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Torcia S, Xie F, Lin C-J, Cakmak H, Franciosi F, Horner K, Onodera C, Song JS, Cedars MI et al (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew TG, Lorthongpanich C, Ang WX, Knowles BB, Solter D (2012) Symmetric cell division of the mouse zygote requires an actin network. Cytoskeleton 69:1040–1046

    Article  CAS  PubMed  Google Scholar 

  • Clift D, Schuh M (2013) Restarting life: fertilization and the transition from meiosis to mitosis. Nat Rev Mol Cell Biol 14:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois A, Schuh M, Ellenberg J, Hiiragi T (2012) The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J Cell Biol 198:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton CM, Carroll J (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J Cell Sci 126:2955–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehapiot B, Carrière V, Carroll J, Halet G (2013) Polarized Cdc42 activation promotes polar body protrusion and asymmetric division in mouse oocytes. Dev Biol 377:20212

    Article  Google Scholar 

  • Dumont J, Million K, Sunderland K, Rassinier P, Lim H, Leader B, Verlhac M-H (2007a) Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev Biol 301:254–265

    Article  CAS  PubMed  Google Scholar 

  • Dumont J, Petri S, Pellegrin F, Terret M-E, Bohnsack MT, Rassinier P, Georget V, Kalab P, Gruss OJ, Verlhac M-H (2007b) A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink J, Carpi N, Betz T, Bétard A, Chebah M, Azioune A, Bornens M, Sykes C, Fetler L, Cuvelier D et al (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13:771–778

    Article  CAS  PubMed  Google Scholar 

  • Fitzharris G (2009) A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse. Development 136:2111–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FitzHarris G, Marangos P, Carroll J (2007) Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol 305:133–144

    Article  CAS  PubMed  Google Scholar 

  • Gilula NB, Epstein ML, Beers WH (1978) Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J Cell Biol 78:58–75

    Article  CAS  PubMed  Google Scholar 

  • Gönczy P (2002) Mechanisms of spindle positioning: focus on flies and worms. Trends Cell Biol 12:332–339

    Article  PubMed  Google Scholar 

  • Green RA, Paluch E, Oegema K (2012) Cytokinesis in animal cells. Annu Rev Cell Dev Biol 28:29–58

    Article  CAS  PubMed  Google Scholar 

  • Gueth-Hallonet C, Antony C, Aghion J, Santa-Maria A, Lajoie-Mazenc I, Wright M, Maro B (1993) gamma-Tubulin is present in acentriolar MTOCs during early mouse development. J Cell Sci 105:157–166

    CAS  PubMed  Google Scholar 

  • Halet G, Carroll J (2007) Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev Cell 12:309–317

    Article  CAS  PubMed  Google Scholar 

  • Hiiragi T, Solter D (2004) First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430:360–364

    Article  CAS  PubMed  Google Scholar 

  • Holubcová Z, Howard G, Schuh M (2013) Vesicles modulate an actin network for asymmetric spindle positioning. Nat Cell Biol 15:937–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Ding L, Pan R, Ma P-F, Cheng P-P, Zhang C-H, Shen Y-T, Xu L, Liu Y, He X-Q et al (2013) WHAMM is required for meiotic spindle migration and asymmetric cytokinesis in mouse oocytes. Histochem Cell Biol 139:525–534

    Article  CAS  PubMed  Google Scholar 

  • Kovar DR (2006) Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 18:11–17

    Article  CAS  PubMed  Google Scholar 

  • Kunda P, Pelling AE, Liu T, Baum B (2008) Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol 18:91–101

    Article  CAS  PubMed  Google Scholar 

  • Kwon M, Bagonis M, Danuser G, Pellman D (2015) Direct microtubule-binding by myosin-10 orients centrosomes toward retraction fibers and subcortical actin clouds. Dev Cell 34:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster OM, Baum B (2014) Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin Cell Dev Biol 34:109–115

    Article  CAS  PubMed  Google Scholar 

  • Lancaster OM, Le Berre M, Dimitracopoulos A, Bonazzi D, Zlotek-Zlotkiewicz E, Picone R, Duke T, Piel M, Baum B (2013) Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev Cell 25:270–283

    Article  CAS  PubMed  Google Scholar 

  • Larson SM, Lee HJ, Hung P, Matthews LM, Robinson DN, Evans JP (2010) Cortical mechanics and meiosis II completion in mammalian oocytes are mediated by myosin-II and ezrin-radixin-moesin (ERM) proteins. Mol Biol Cell 21:3182–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leader B, Lim H, Carabatsos MJ, Harrington A, Ecsedy J, Pellman D, Maas R, Leder P (2002) Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat Cell Biol 4:921–928

    Article  CAS  PubMed  Google Scholar 

  • Levi M, Ghetler Y, Shulman A, Shalgi R (2013) Morphological and molecular markers are correlated with maturation-competence of human oocytes. Hum Reprod 28:2482–2489

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang Q-C, Wang F, Duan X, Dai X-X, Wang T, Liu H-L, Cui X-S, Kim N-H, Sun S-C (2012) Nucleation promoting factors regulate the expression and localization of Arp2/3 complex during meiosis of mouse oocytes. PLoS One 7:e52277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo FJ, Chen DY (1985) Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol 107:382–394

    Article  CAS  PubMed  Google Scholar 

  • Luksza M, Queguigner I, Verlhac M-H, Brunet S (2013) Rebuilding MTOCs upon centriole loss during mouse oogenesis. Dev Biol 382:48–56

    Article  CAS  PubMed  Google Scholar 

  • Manandhar G, Feng D, Yi Y-J, Lai L, Letko J, Laurincik J, Sutovsky M, Salisbury JL, Prather RS, Schatten H et al (2006) Centrosomal protein centrin is not detectable during early pre-implantation development but reappears during late blastocyst stage in porcine embryos. Reproduction 132:423–434

    Article  CAS  PubMed  Google Scholar 

  • Maro B, Verlhac M-H (2002) Polar body formation: new rules for asymmetric divisions. Nat Cell Biol 4:E281–E283

    Article  CAS  PubMed  Google Scholar 

  • Maro B, Johnson MH, Pickering SJ, Flach G (1984) Changes in actin distribution during fertilization of the mouse egg. J Embryol Exp Morphol 81:211–237

    CAS  PubMed  Google Scholar 

  • Mori M, Monnier N, Daigle N, Bathe M, Ellenberg J, Lénárt P (2011) Intracellular transport by an anchored homogeneously contracting F-actin meshwork. Curr Biol 21:606–611

    Article  CAS  PubMed  Google Scholar 

  • Motosugi N, Bauer T, Polanski Z, Solter D, Hiiragi T (2005) Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev 19:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris RP, Freudzon M, Mehlmann LM, Cowan AE, Simon AM, Paul DL, Lampe PD, Jaffe LA (2008) Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development 135:3229–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuki J, Nagai Y, Lopata A, Chiba K, Yasmin L, Sankai T (2012) Symmetrical division of mouse oocytes during meiotic maturation can lead to the development of twin embryos that amalgamate to form a chimeric hermaphrodite. Hum Reprod 27:380–387

    Article  PubMed  Google Scholar 

  • Pfender S, Kuznetsov V, Pleiser S, Kerkhoff E, Schuh M (2011) Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr Biol 21:955–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Propst F, Rosenberg MP, Iyer A, Kaul K, Vande Woude GF (1987) c-mos proto-oncogene RNA transcripts in mouse tissues: structural features, developmental regulation, and localization in specific cell types. Mol Cell Biol 7:1629–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan ME (2013) Direct interaction between two actin nucleators is required in Drosophila oogenesis. Development 140:4417–4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD (2005) Drosophila spire is an actin nucleation factor. Nature 433:382–388

    Article  CAS  PubMed  Google Scholar 

  • Quinlan ME, Hilgert S, Bedrossian A, Mullins RD, Kerkhoff E (2007) Regulatory interactions between two actin nucleators, Spire and Cappuccino. J Cell Biol 179:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappaport R, Rappaport BN (1974) Establishment of cleavage furrows by the mitotic spindle. J Exp Zool 189:189–196

    Article  CAS  PubMed  Google Scholar 

  • Renault L, Bugyi B, Carlier M-F (2008) Spire and cordon-bleu: multifunctional regulators of actin dynamics. Trends Cell Biol 18:494–504

    Article  CAS  PubMed  Google Scholar 

  • Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier M-F (2004) Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119:419–429

    Article  CAS  PubMed  Google Scholar 

  • Romero S, Didry D, Larquet E, Boisset N, Pantaloni D, Carlier M-F (2007) How ATP hydrolysis controls filament assembly from profilin-actin: implication for formin processivity. J Biol Chem 282:8435–8445

    Article  CAS  PubMed  Google Scholar 

  • Roth S, Lynch JA (2009) Symmetry breaking during drosophila oogenesis. Cold Spring Harb Perspect Biol 1:a001891

    Article  PubMed  PubMed Central  Google Scholar 

  • Roubinet C, Cabernard C (2014) Control of asymmetric cell division. Curr Opin Cell Biol 31:84–91

    Article  CAS  PubMed  Google Scholar 

  • Schatten G, Simerly C, Schatten H (1985) Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci U S A 82:4152–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmerler S, Wessel G (2011) Polar Bodies—more a lack of understanding than a lack of respect. Mol Reprod Dev 78:3–8

    Article  CAS  PubMed  Google Scholar 

  • Schuh M (2011) An actin-dependent mechanism for long-range vesicle transport. Nat Cell Biol 13:1431–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18:1986–1992

    Article  CAS  PubMed  Google Scholar 

  • Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N (2006) Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology 147:2280–2286

    Article  CAS  PubMed  Google Scholar 

  • Simerly C, Nowak G, de Lanerolle P, Schatten G (1998) Differential expression and functions of cortical myosin IIA and IIB isotypes during meiotic maturation, fertilization, and mitosis in mouse oocytes and embryos. Mol Biol Cell 9:2509–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA (2011) Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–230

    Article  CAS  PubMed  Google Scholar 

  • Sun S-C, Wang Z-B, Xu Y-N, Lee S-E, Cui X-S, Kim N-H (2011a) Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS One 6:e18392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S-C, Xu Y-N, Li Y-H, Lee S-E, Jin Y-X, Cui X-S, Kim N-H (2011b) WAVE2 regulates meiotic spindle stability, peripheral positioning and polar body emission in mouse oocytes. Cell Cycle 10:1853–1860

    Article  CAS  PubMed  Google Scholar 

  • Szollosi D, Calarco P, Donahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11:521–541

    CAS  PubMed  Google Scholar 

  • Théry M, Jiménez-Dalmaroni A, Racine V, Bornens M, Jülicher F (2007) Experimental and theoretical study of mitotic spindle orientation. Nature 447:493–496

    Article  PubMed  Google Scholar 

  • Verlhac MH, de Pennart H, Maro B, Cobb MH, Clarke HJ (1993) MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev Biol 158:330–340

    Article  CAS  PubMed  Google Scholar 

  • Verlhac MH, Kubiak JZ, Clarke HJ, Maro B (1994) Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120:1017–1025

    CAS  PubMed  Google Scholar 

  • Verlhac MH, Kubiak JZ, Weber M, Géraud G, Colledge WH, Evans MJ, Maro B (1996) Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development 122:815–822

    CAS  PubMed  Google Scholar 

  • Verlhac M-H, Lefebvre C, Guillaud P, Rassinier P, Maro B (2000) Asymmetric division in mouse oocytes: with or without Mos. Curr Biol 10:1303–1306

    Article  CAS  PubMed  Google Scholar 

  • Vinot S, Le T, Maro B, Louvet-Vallée S (2004) Two PAR6 proteins become asymmetrically localized during establishment of polarity in mouse oocytes. Curr Biol 14:520–525

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Kubiak JZ, Arlinghaus RB, Pines J, Maro B (1991) c-mos proto-oncogene product is partly degraded after release from meiotic arrest and persists during interphase in mouse zygotes. Dev Biol 148:393–397

    Article  CAS  PubMed  Google Scholar 

  • Wolinsky H (2007) A mythical beast. Increased attention highlights the hidden wonders of chimeras. EMBO Rep 8:212–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wühr M, Tan ES, Parker SK, Detrich HW, Mitchison TJ (2010) A model for cleavage plane determination in early amphibian and fish embryos. Curr Biol 20:2040–2045

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamagata K, FitzHarris G (2013) 4D imaging reveals a shift in chromosome segregation dynamics during mouse pre-implantation development. Cell Cycle 12:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanez LZ, Han J, Behr BB, Pera RAR, Camarillo DB (2016) Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat Commun 7:10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R (2011) Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol 13:1252–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi K, Rubinstein B, Unruh JR, Guo F, Slaughter BD, Li R (2013) Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J Cell Biol 200:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo H, Roth-Johnson EA, Bor B, Quinlan ME (2015) Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis. Mol Biol Cell 26:1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X-J, Yi Z, Gao Z, Qin D, Zhai Y, Chen X, Ou-Yang Y, Wang Z-B, Zheng P, Zhu M-S et al (2014) The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat Commun 5:4887

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Graham OS, Raposo A, St Johnston D (2012) Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Science 336:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondation pour la Recherche Médicale (Equipe FRM to MHV), the ANR (ANR-14-CE11-0002 to MHV) and the Fondation ARC (PJA20131200412 to MET). This work has received support from the Fondation Bettencourt Schueller, support under the programme “Investissements d’Avenir” launched by the French Government and implemented by the ANR, with the references: ANR-10-LABX-54 MEMO LIFE, ANR-11-IDEX-0001-02 PSL* Research University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Hélène Verlhac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chaigne, A., Terret, ME., Verlhac, MH. (2017). Asymmetries and Symmetries in the Mouse Oocyte and Zygote. In: Tassan, JP., Kubiak, J. (eds) Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-53150-2_13

Download citation

Publish with us

Policies and ethics