Skip to main content

Constitutive Model for Viscous Clays Under the ISA Framework

  • Chapter
  • First Online:
Holistic Simulation of Geotechnical Installation Processes

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 82))

Abstract

The ISA-plasticity is a novel approach based on the intergranular strain concept. It introduces a yield surface within the intergranular strain space. The intergranular strain is related to the recent strain history, which is used to improve the model performance for cyclic loading. This paper proposes an ISA model for the simulation of saturated clays incorporating also possible viscous effects that clays may have. These rate-dependent phenomena are described within a viscous strain rate, which is added to the model besides the elastic and (hypo)plastic one. Possessing the plastic strain rate independent from the viscous strain rate the model is able to describe both viscous and non-viscous clays. At the beginning the formulation of the model is described. Subsequently, some explanation about the numerical implementation and the required parameters is given. Finally, the model is evaluated through some simulations with a Kaolin clay, which are compared with experimental results of laboratory tests. The simulations include oedometric and triaxial tests under monotonic and cyclic loading. The monotonic tests include also strain rate variation to evaluate the rate dependence of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D., Richart, F.: Effects of straining on shear modulus of clays. J. Geotech. Eng. ASCE 102(9), 975–987 (1976)

    Google Scholar 

  2. Avgerinos, V., Potts, D.M., Standing, J.: The use of kinematic hardening models for predicting tunnelling-induced ground movements in London clay. Géotechnique 66(2), 106–120 (2016)

    Article  Google Scholar 

  3. Buisman, K.: Results of long duration settlement test. In: 1st ICSMFE, pp. 103–107, Cambridge (1936)

    Google Scholar 

  4. Dafalias, Y.: Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J. Eng. Mech. 112(9), 966–987 (1986)

    Article  Google Scholar 

  5. Fuentes, W.: Contributions in Mechanical Modelling of Fill Materials. Ph.D. thesis, Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology, Karlsruhe, vol. 179 (2014)

    Google Scholar 

  6. Fuentes, W., Hadzibeti, M., Triantafyllidis, T.: Constitutive model for clays under the ISA framework. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 115–129. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_6

    Chapter  Google Scholar 

  7. Fuentes, W., Tafili, M., Triantafyllidis, T.: An ISA-plasticity based model for viscous and non-viscous clays. Sent, Acta Geotechnica (2016)

    Google Scholar 

  8. Fuentes, W., Triantafyllidis, T.: ISA model: a constitutive model for soils with yield surface in the intergranular strain space. INJAMG 39(11), 1235–1254 (2015)

    Google Scholar 

  9. Hadzibeti, M.: Formulation and calibration of a viscous ISA model for clays. Masterthesis. Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute for Technology, Karlsruhe (2016)

    Google Scholar 

  10. Herle, I., Kolymbas, D.: Hypoplasticity for soils with low friction angles. Comp. Geotech. 31(5), 365–373 (2004)

    Article  Google Scholar 

  11. Jaky, J.: Pressure in silos. In: 2nd ICSMFE, pp. 103–107, London (1948)

    Google Scholar 

  12. Karstunen, M., Yin, Z.: Modelling time-dependent behavior of murro test embankment. Géotechnique 60(10), 735–749 (2010)

    Article  Google Scholar 

  13. Manzari, M., Akaishi, M., Dafalias, Y.: A simple anisotropic clay plasticity model. Mech. Res. Commun. 29(4), 241–245 (2002)

    Article  MATH  Google Scholar 

  14. Manzari, M., Dafalias, Y.: A critical state two-surface plasticity model for sands. GEOT 47(2), 255–272 (1997)

    Article  Google Scholar 

  15. Manzari, M., Papadimitriou, A., Dafalias, Y.: SANICLAY: simple anisotropic clay plasticity model. IJNAMG 30(4), 1231–1257 (2006)

    MATH  Google Scholar 

  16. Masin, D.: Hypoplastic models for fine-grained solid. Ph.D. thesis, Charles University, Prague (2006)

    Google Scholar 

  17. Niemunis, A.: Extended hypoplastic models for soils. Habilitation, Monografia 34, Ruhr-University Bochum (2003)

    Google Scholar 

  18. Niemunis, A., Grandas-Tavera, C.E., Prada-Sarmiento, L.F.: Anisotropic visco-hypoplasticity. Acta Geotech. 4(4), 293–314 (2009)

    Article  Google Scholar 

  19. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. MCFM 4(2), 279–299 (1997)

    Google Scholar 

  20. Poblete, M., Fuentes, W., Triantafyllidis, T.: On the constitutive modeling of multidimensional cyclic loading. Sent, Acta Geotechnica (2016)

    Google Scholar 

  21. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  22. Stolle, D., Bonnier, P., Vermeer, P.: A soft soil model and experiences with two integration schemes. In: 6th International Symposium on Numerical Models in Geomechanics (NUMOG VI), pp. 123–128, Amsterdam, The Netherlands (1999)

    Google Scholar 

  23. Tsai, C., Mejia, L., Meymand, P.: A strain-based procedure to estimate strength softening in saturated clays during earthquakes. Soils Dynam. Earthquake Eng. 66, 191–198 (2014)

    Article  Google Scholar 

  24. Whittle, A.J., Kavvadas, M.J.: Formulation of MIT-E3 constitutive model for over consolidated clays. J. Geotech. Engi. Div. ASCE 120(1), 173–198 (1994)

    Article  Google Scholar 

  25. Wichtmann, T.: Soil behaviour under cyclic loading - experimental observations, constitutive description and applications. Habilitation, Karlsruhe Institute for Technology, Institute of Soil Mechanics and Rock Mechanics, vol. 181 (2016)

    Google Scholar 

  26. Wolffersdorff, P.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive Frictional Mater. 1(3), 251–271 (1996)

    Article  Google Scholar 

  27. Yao, Y., Kong, L., Hu, J.: An elastic-viscous-plastic model for overconsolidated clays. Sci. China Technol. Sci. 56(2), 441–457 (2013)

    Article  Google Scholar 

  28. Yin, J., Graham, J.: Elastic viscoplastic modelling of the time-dependent stress-strain behavior of soils. Can. Geot. J. 36(4), 736–745 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merita Tafili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tafili, M., Triantafyllidis, T. (2017). Constitutive Model for Viscous Clays Under the ISA Framework. In: Triantafyllidis, T. (eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-52590-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52590-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52589-1

  • Online ISBN: 978-3-319-52590-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics