Skip to main content

Micro-signatures: The Effectiveness of Known Bad N-Grams for Network Anomaly Detection

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10128))

Included in the following conference series:

Abstract

Network intrusion detection is broadly divided into signature and anomaly detection. The former identifies patterns associated with known attacks and the latter attempts to learn a ‘normal’ pattern of activity and alerts when behaviors outside of those norms is detected. The n-gram methodology has arguably been the most successful technique for network anomaly detection. In this work we discover that when training data is sanitized, n-gram anomaly detection is not primarily anomaly detection, as it receives the majority of its performance from an implicit non-anomaly subsystem, that neither uses typical signatures nor is anomaly based (though it is closely related to both). We find that for our data, these “micro-signatures” provide the vast majority of the detection capability. This finding changes how we understand and approach n-gram based ‘anomaly’ detection. By understanding the foundational principles upon which it operates, we can then better explore how to optimally improve it.

The rights of this work are transferred to the extent transferable according to title 17 U.S.C. 105.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smaha, S.E.: Haystack: an intrusion detection system. In: Aerospace Computer Security Applications Conference (1988)

    Google Scholar 

  2. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 2, 222–232 (1987)

    Article  Google Scholar 

  3. Vaccaro, H.S., Liepins, G.E.: Detection of anomalous computer session activity. In: IEEE Symposium on Security and Privacy (1989)

    Google Scholar 

  4. Forrest, S., Hofmeyr, S., Somayaji, A.: Computer immunology. Commun. ACM 40(10), 88–96 (1997)

    Article  Google Scholar 

  5. Damashek, D.: Gauging similarity with n-grams: language independent categorization of text. Science 267(5199), 843–848 (1995)

    Article  Google Scholar 

  6. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30143-1_11

    Chapter  Google Scholar 

  7. The Unicode Standard Version 6.0- Core Specification, February 2011. http://www.unicode.org/versions/Unicode6.0.0/ch01.pdf

  8. Wang, K., Parekh, Janak, J., Stolfo, Salvatore, J.: Anagram: a content anomaly detector resistant to mimicry attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 226–248. Springer, Heidelberg (2006). doi:10.1007/11856214_12

    Chapter  Google Scholar 

  9. Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-Gram against the machine: on the feasibility of the N-Gram network analysis for binary protocols. In: Balzarotti, D., Stolfo, Salvatore, J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 354–373. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33338-5_18

    Chapter  Google Scholar 

  10. Axelsson, S.: The base-rate fallacy and the difficulty of intrusion detection. ACM Trans. Inf. Syst. Secur. 3(3), 186–205 (2000)

    Article  MathSciNet  Google Scholar 

  11. Chang, R., Harang, R.E., Payer, G.S.: Extremely lightweight intrusion detection (ELIDe), Army Research Laboratory (2013)

    Google Scholar 

  12. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network intrusion detection. In: Security and Privacy (2010)

    Google Scholar 

  13. Bolzoni, D., Zambon, E., Etalle, S., Hartel, P.: Poseidon: a 2-tier anomaly-based intrusion detection system, arXiv.preprint.cs/0511043 (2005)

  14. Wressnegger, C., Schwenk, G., Arp, D., Rieck, K.: A close look on n-grams in intrusion detection: anomaly detection vs. classification. In: 2013 ACM workshop on Artificial intelligence and security (2013)

    Google Scholar 

  15. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.A.: Using generalization and characterization techniques in the anomaly-based detection of web attacks. In: NDSS (2006)

    Google Scholar 

  16. Guangmin, L.: Modeling unknown web attacks in network anomaly detection. In: Third International Conference on Convergence and Hybrid Information Technology (2008)

    Google Scholar 

  17. Ingham, K.L., Somayaji, A., Burge, J., Forrest, S.: Learning DFA representations of HTTP for protecting web applications. Comput. Netw. 51(5), 1239–1255 (2007)

    Article  MATH  Google Scholar 

  18. Görnitz, N., Kloft, M., Rieck, K., Brefeld, U.: Active learning for network intrusion detection. In: Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence (2009)

    Google Scholar 

  19. Axelsson, S.: Intrusion detection systems: a survey and taxonomy (2000)

    Google Scholar 

  20. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31, 2435–2463 (1999)

    Article  Google Scholar 

  21. Roesch, M.: Snort: lightweight intrusion detection for networks. In: LISA (1999)

    Google Scholar 

  22. Rieck, K., Laskov, P.: Detecting unknown network attacks using language models. In: Büschkes, R., Laskov, P. (eds.) Detection of Intrusions and Malware & Vulnerability Assessment. LNCS, pp. 74–90. Springer, Heidelberg (2006)

    Google Scholar 

  23. Rieck, K., Laskov, P., Müller, K.-R.: Efficient algorithms for similarity measures over sequential data: a look beyond kernels. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 374–383. Springer, Heidelberg (2006). doi:10.1007/11861898_38

    Chapter  Google Scholar 

  24. Cretu-Ciocarlie, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J.: Adaptive anomaly detection via self-calibration and dynamic updating. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 41–60. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04342-0_3

    Chapter  Google Scholar 

  25. Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., Lee, W.: McPAD: a multiple classifier system for accurate payload-based anomaly detection. Comput. Netw. 53(6), 864–881 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Harang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Harang, R., Mell, P. (2017). Micro-signatures: The Effectiveness of Known Bad N-Grams for Network Anomaly Detection. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2016. Lecture Notes in Computer Science(), vol 10128. Springer, Cham. https://doi.org/10.1007/978-3-319-51966-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51966-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51965-4

  • Online ISBN: 978-3-319-51966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics