Skip to main content

Versatile Interaction Control and Haptic Identification in Humans and Robots

  • Chapter
  • First Online:
Geometric and Numerical Foundations of Movements

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

Abstract

Traditional industrial robot controllers are typically dedicated to a specific task, while humans always interact with new objects yielding unknown interaction forces and instability. In this chapter, we examine the neuromechanics of such contact tasks. We develop a model of the necessary adaptation of force, mechanical impedance and planned trajectory for stable and efficient interaction with rigid or compliant surfaces of different structures. Simulations demonstrate that this model can be used as a novel adaptive robot controller yielding versatile control in representative interactive tasks such as cutting, drilling and haptic exploration, where the robot acquires a model of the geometry and structure of the surface along which it is moving.

This work was funded in part by the European Community under the grants EU-FP7 PEOPLE-ITN-317488-CONTEST, ICT-601003 BALANCE, ICT-611626 SYMBITRON, and EU-H2020 ICT-644727 COGIMON.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Jarrassé, V. Sanguineti, E. Burdet, Slaves no longer: review on role assignment for human-robot joint motor action. Adapt. Behav. 22(1), 70–82 (2014)

    Article  Google Scholar 

  2. P. Dario, M. Bergamasco, A. Sabatini, Sensing body structures by an advanced robot system, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1988), pp. 1758–1763

    Google Scholar 

  3. K. Pribadi, J.S. Bay, H. Hemami, Exploration and dynamic shape estimation by a robotic probe. IEEE Trans. Syst. Man Cybern. 19(4), 840–846 (1989)

    Article  Google Scholar 

  4. S. Sestili, A. Starita, Learning objects by tactile perception, in Proceedings of the IEEE International Engineering in Medicine and Biology Society (EMBC) (1989), pp. 896–897

    Google Scholar 

  5. S.A. Stansfield, Haptic perception with an articulated, sensate robot hand. Robotica 10(6), 497–508 (1992)

    Google Scholar 

  6. A.M. Okamura, M.R. Cutkosky, Haptic exploration of fine surface features, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (1999), pp. 2930–2936

    Google Scholar 

  7. A.M. Okamura, M.R. Cutkosky, Feature-guided exploration with a robotic finger, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2001), pp. 589–596

    Google Scholar 

  8. H.T. Tanaka, K. Kushihama, N. Ueda, S. Hirai, A vision-based haptic exploration, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2003), pp. 3441–3448

    Google Scholar 

  9. A. Bierbaum, M. Rambow, T. Asfour, R. Dillmann, A potential field approach to dexterous tactile exploration of unknown objects, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2008), pp. 360–366

    Google Scholar 

  10. F. Mazzini, D. Kettler, S. Dubowsky, J. Guerrero, Tactile robotic mapping of unknown surfaces: an application to oil well exploration, in IEEE International Workshop on Robotic and Sensors Environments (ROSE) (2009), pp. 80–88

    Google Scholar 

  11. D.R. Faria, R. Martins, J. Lobo, J. Dias, Probabilistic representation of 3D object shape by in-hand exploration, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010), pp. 1560–1565

    Google Scholar 

  12. W.W. Mayol-Cuevas, J. Juarez-Guerrero, S. Munoz-Gutierrez, A first approach to tactile texture recognition. in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (1993), pp. 4246–4250

    Google Scholar 

  13. P.A. Schmidt, E. Mael, R.P. Wurtz, A sensor for dynamic tactile information with applications in human- robot interaction and object exploration. Robot. Auton. Syst. 54(12), 1005–1014 (2006)

    Article  Google Scholar 

  14. D. Kraft, A. Bierbaum, M. Kjaergaard, J. Ratkevicius, A. Kjaer-Nielsen, C. Ryberg, H. Petersen, T. Asfour, R. Dillmann, N. Kruger, Tactile object exploration using cursor navigation sensors, in Proceedings of the IEEE WorldHaptics (2009), pp. 296–301

    Google Scholar 

  15. N. Hogan, Impedance control: an approach to manipulation. J. Dyn. Syst. Meas. Control Trans. ASME 107(1), 1–24 (1985)

    Google Scholar 

  16. O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  17. J.R. Lackner, P. Dizio, Rapid adaptation to coriolis-force perturbations of arm trajectory. J. Neurophysiol. 72(1), 299–313 (1994)

    Google Scholar 

  18. R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 74(5), 3208–3224 (1994)

    Google Scholar 

  19. M.A. Conditt, F. Gandolfo, F.A. Mussa-Ivaldi, The motor system does not learn the dynamics of the arm by rote memorization of past experience. J. Neurophysiol. 78, 554–560 (1997)

    Google Scholar 

  20. T.E. Milner, C. Cloutier, Compensation for mechanically unstable loading in voluntary wrist movement. Exp. Brain Res. 94(3), 522–532 (1993)

    Article  Google Scholar 

  21. E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato, The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)

    Article  Google Scholar 

  22. A. Kadiallah, G. Liaw, M. Kawato, D.W. Franklin, E. Burdet, Impedance control is selectively tuned to multiple directions of movement. J. Neurophysiol. 106(5), 2737–2748 (2011)

    Article  Google Scholar 

  23. D.W. Franklin, G. Liaw, T.E. Milner, R. Osu, E. Burdet, M. Kawato, Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27(29), 7705–7716 (2007)

    Article  Google Scholar 

  24. D.W. Franklin, E. Burdet, K.P. Tee, R. Osu, C.M. Chew, T.E. Milner, M. Kawato, CNS learns stable, accurate, and efficient movements using a simple algorithm. J. Neurosci. 28(44), 11165–11173 (2008)

    Article  Google Scholar 

  25. K.P. Tee, D.W. Franklin, M. Kawato, T.E. Milner, E. Burdet, Concurrent adaptation of force and impedance in the redundant muscle system. Biol. Cybern. 102(1), 31–44 (2010)

    Article  MATH  Google Scholar 

  26. C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, E. Burdet, Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–30 (2011)

    Article  Google Scholar 

  27. G. Ganesh, A. Albu-Schaeffer, M. Haruno, M. Kawato, E. Burdet, Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 2705–2711

    Google Scholar 

  28. G. Ganesh, N. Jarrassé, S. Haddadin, A. Albu-Schaeffer, E. Burdet, A versatile biomimetic controller for contact tooling and haptic exploration, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012), pp. 3329–3334

    Google Scholar 

  29. V.S. Chib, J.L. Patton, K.M. Lynch, F.A. Mussa-Ivaldi, Haptic identification of surfaces as fields of force. J. Neurophysiol. 95(2), 1068–1077 (2005)

    Article  Google Scholar 

  30. M. Casadio, A. Pressman, S. Mussa-Ivaldi, Learning to push and learning to move: the adaptive control of contact forces. Front. Comput. Neurosci. 9(118) (2015)

    Google Scholar 

  31. F.A. Mussa-Ivaldi, N. Hogan, E. Bizzi, Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5(10), 2732–2743 (1985)

    Google Scholar 

  32. J. Won, N. Hogan, Stability properties of human reaching movements. Exp. Brain Res. 107(1), 125–126 (1995)

    Article  Google Scholar 

  33. D.W. Franklin, E. Burdet, R. Osu, M. Kawato, T.E. Milner, Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp. Brain Res. 151(2), 145–157 (2003)

    Article  Google Scholar 

  34. H. Gomi, R. Osu, Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18(21), 8965–8978 (1998)

    Google Scholar 

  35. K.P. Tee, E. Burdet, C.M. Chew, T.E. Milner, A model of endpoint force and impedance in human arm movements. Biol. Cybern. 90, 368–375 (2004)

    Article  MATH  Google Scholar 

  36. P. Morasso, Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981)

    Article  Google Scholar 

  37. T. Flash, The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern. 57(4–5), 257–274 (1987)

    Article  MATH  Google Scholar 

  38. H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272(5258), 117–120 (1996)

    Article  Google Scholar 

  39. J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prantice-Hall, 1991)

    Google Scholar 

  40. E. Burdet, A. Codourey, L. Rey, Experimental evaluation of nonlinear adaptive controllers. IEEE Control Syst. Mag. 18(2), 39–47 (1998)

    Article  Google Scholar 

  41. R. Osu, E. Burdet, D.W. Franklin, T.E. Milner, M. Kawato, Different mechanisms in adaptation to stable and unstable dynamics. J. Neurophysiol. 90(5), 3255–3269 (2003)

    Article  Google Scholar 

  42. Y. Li, E. Burdet, Dynamic analysis of simultaneous adaptation of force, impedance and trajectory (2016). arXiv:1605.07834 [cs.RO] (also submitted)

  43. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC, 1994)

    Google Scholar 

  44. M.H. Raibert, J.J. Craig, Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Contr. 103(2), 126–133 (1981)

    Article  Google Scholar 

  45. R.J. Anderson, M.W. Spong, Hybrid impedance control of robotic manipulators. IEEE J. Robot. Autom. 4(5), 549–556 (1982)

    Article  Google Scholar 

  46. E. Burdet, T.E. Milner, D.W. Franklin, Human Robotics: Neuromechanics and Motor Control (MIT press, 2013)

    Google Scholar 

  47. G. de Magistris, Etude et conception de la commande de mannequins virtuels dynamiques pour l’évaluation ergonomique des postes de travail. Ph.D. thesis, Université Pierre et Marie Curie Paris VI (2013)

    Google Scholar 

  48. E. Theodorou, J. Buchli, S. Schaal, A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010)

    MathSciNet  MATH  Google Scholar 

  49. N. Sebanz, H. Bekkering, G. Knoblich, Joint action: bodies and minds moving together. Trends Cognit. Sci. 10, 70–76 (2006)

    Article  Google Scholar 

  50. C. Basdogan, C.-H. Ho, M.A. Srinivasan, M. Slater, An experimental study on the role of touch in shared virtual environments. ACM Trans. Comput.-Hum. Interact. 7, 443–460 (2000)

    Google Scholar 

  51. K. Reed, M. Pershkin, Haptically linked dyads: are two motor-control systems better than one? Psychol. Sci. 17, 365–366 (2006)

    Article  Google Scholar 

  52. G. Ganesh, R. Osu, M. Kawato, E. Burdet, Two is better than one: physical interactions improve motor performance in humans. Sci. Rep. 4, 3824 (2014)

    Article  Google Scholar 

  53. R.P.R.D. van der Wel, G. Knoblich, N. Sebanz, Let the force be with us: Dyads exploit haptic coupling for coordination. J. Exp. Psychol. Hum. Percept. Perform. 37, 1420–1431 (2011)

    Article  Google Scholar 

  54. A. Melendez-Calderon, V. Komisar, E. Burdet, Interpersonal strategies for disturbance attenuation during a rhythmic joint motor action. Physiol. Behav. 147, 348–358 (2015)

    Article  Google Scholar 

  55. N. Jarrassé, T. Charalambous, E. Burdet, A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7, e49945 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Atsushi Takagi for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Burdet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, Y., Jarrassé, N., Burdet, E. (2017). Versatile Interaction Control and Haptic Identification in Humans and Robots. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics