Skip to main content

Foreshock Patterns Preceding Great Earthquakes in the Subduction Zone of Chile

  • Chapter
  • First Online:
Geodynamics of the Latin American Pacific Margin

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 917 Accesses

Abstract

Foreshock activity is considered as one of the most promising precursory changes for the main shock prediction in the short term. Averaging over several foreshock sequences has shown that foreshocks are characterized by distinct 3D patterns: their epicenters move towards the main shock epicenter, event count accelerates, and b-value drops. However, these space–time-size patterns were verified so far only in a very few individual cases mainly due to inadequate seismicity catalogue data. We have investigated 3D foreshock patterns before the Mw 8.8 Maule in 27 February 2010, Mw 8.1 Iquique in 1 April 2014, and Mw 8.4 Illapel in 16 September 2015 great earthquakes in the Chile subduction zone. To avoid biased results, no a priori spatiotemporal definitions of foreshocks were inserted. The procedure was based on pattern recognition from statistically significant seismicity changes in the three domains. The pattern recognition in one domain was independent of the pattern recognition in another domain. We found and verified with two independent catalogue data sets (CSN, IPOC) that within a critical area of ca. 65 km from the main shock epicenter, the 2014 event was preceded by distinct foreshock 3D patterns. A nearly weak foreshock stage (20 January–14 March 2014) was followed by a main-strong stage (15 March–1 April 2014) highly significant in all domains, although foreshock activity slightly decreased in about the last 5 days. Seismic moment release also accelerated in the last stage due to the occurrence of a cluster of very strong foreshock events. Foreshock activity very likely occurred in the hanging-wall fault domain on the South American Plate overriding Nazca Plate. The 2014 foreshock activity was quite similar to the one preceding the 6 Apr. 2009 L’ Aquila (Italy) Mw 6.3 earthquake associated with normal faulting. Using the 2014 earthquake as a reference event, we observed that similar foreshock 3D patterns preceded the 2010 and 2015 earthquakes within critical distances of about 170 and 50 km, respectively. However, the foreshock activities were only weak in both the cases likely because of poor catalogue completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, R. E., & Mori, J. (1996). Occurrence patterns of foreshocks to large earthquakes in the western United States. Nature, 381, 303–307.

    Article  Google Scholar 

  • Agnew, D. C., & Jones, L. (1991). Prediction probabilities from foreshocks. Journal Geophysical Research, 96(B7), 11959–11971.

    Article  Google Scholar 

  • Aki, K. (1965). Maximum likelihood estimates of b in the formula logN = a-bM and its confidence limits. Bull. Earth. Res. Inst. Univ. Tokyo, 43, 237–239.

    Google Scholar 

  • Avlonitis, Μ., & Papadopoulos, G. A. (2014). Foreshocks and b value: bridging macroscopic observations to source mechanical considerations. Pure and Applied Geophysics. doi:10.1007/s00024-014-0799-6.

    Article  Google Scholar 

  • Bedford, J., Moreno, M., Schurr, B., Bartsch, M., & Oncken, O. (2015). Investigating the final seismic swarm before the Iquique-Pisagua 2014 Mw 8.1 by comparison of continuous GPS and seismic foreshock data. Geophysical Reseach Letters. doi:10.1002/2015GL063953.

    Article  Google Scholar 

  • Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2013). The long precursory phase of most large interplate earthquakes. Nature Geoscience, 6(4), 299–302. doi:10.1038/ngeo1770.

    Article  Google Scholar 

  • Brodsky, E. E., & Lay, T. H. (2014). Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science, 344, 700–702.

    Article  Google Scholar 

  • Chan, C.-H., Wu, Y.-M., Tseng, T.-L., Lin, T.-L., & Chen, C.-C. (2012). Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics. doi:10.1016/j.tecto.2012.02.004.

    Article  Google Scholar 

  • Chen, Y., Liu, J. and Ge, H., 1999. Pattern Characteristics of Foreshock Sequences. Pageoph, 155, 2–4, 395–408.

    Google Scholar 

  • Comte, D., Eisenberg, A., Lorca, E., Pardo, M., Ponce, L., Saragoni, R., et al. (1986). The 1985 Central Chile earthquake: a repeat of previous great earthquakes in the region? Science, 233, 449–453.

    Article  Google Scholar 

  • Console, R., Murru, M., & Alessandrini, B. (1993). Foreshock statistics and their possible relationship to earthquake prediction in the Italian region. Bulletin of the Seismological Society of America, 83, 1248–1263.

    Google Scholar 

  • Daskalaki, E., Spiliotis, K., Siettos, C., Minadakis, G. and Papadopoulos G.A. (2016). Foreshocks and short-term hazard assessment to large earthquakes using complex networks: the case of the 2009 L’Aquila earthquake (submitted).

    Google Scholar 

  • Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1995). Foreshock sequence of the 1992 Landers, California, earthquake and its implications for earthquake nucleation. Journal Geophysical Research, 100(B6), 9865–9880.

    Article  Google Scholar 

  • Duputel, Z., Jiang, J., Jolivet, R., et al. (2015). The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty. Geophysical Reseach Letters. doi:10.1002/2015GL065402.

    Article  Google Scholar 

  • Frohlich, C., & Davis, S. D. (1993). Teleseismic b values; or, much ado about 1.0. Journal Geophysical Research, 98(B1), 631–644.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Google Scholar 

  • Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. Journal Geophysical Research. doi:10.1029/2004JB003247.

    Article  Google Scholar 

  • Hainzl, S., Zöller, G., & Kurths, J. (1999). Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes. Journal Geophysical Research, 104, 7243–7253.

    Article  Google Scholar 

  • Hamilton, R. M. (1967). Mean magnitude of an earthquake sequence. Bull. Seism. Soc. Am., 57, 1115–1116.

    Google Scholar 

  • Helmstetter, A., Sornette, S., & Grasso, J.-R. (2003). Main shocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws. Journal Geophysical Research. doi:10.1029/2002JB001991.

    Article  Google Scholar 

  • Ishida, M., & Kanamori, H. (1978). The foreshock activity of the 1971 San Fernando earthquake. California. Bulletin of the Seismological Society of America 68, 1265–1279.

    Google Scholar 

  • Ishimoto, M., & Iida, K. (1939). Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthq. Res. Inst. Tokyo Univ. 17, 443–478.

    Google Scholar 

  • Jones, L. M., & Molnar, P. (1979). Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. Journal Geophysical Research 84, 3596–3608.

    Article  Google Scholar 

  • Kagan, Y., & Knopoff, L. (1978). Statistical study of the occurrence of shallow earthquakes. Geophys. J. Roy. Astr. Soc. 55, 67–86.

    Article  Google Scholar 

  • Kato, A., & Nakagawa, S. (2014). Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters. doi:10.1002/2014GL061138.

    Article  Google Scholar 

  • Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 335(6069), 705–708.

    Article  Google Scholar 

  • Kosobokov, V. G., & Nekrasova, A. K. (2005). Temporal variations in the parameters of the Unified Scaling Law for Earthquakes in the eastern part of Honshu Island (Japan). Doklady Earth Sciences 405, 1352–1356.

    Google Scholar 

  • Lay, Th, Yue, H., Brodsky, E. E., & An, C. (2014). The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophysical Reseach Letters. doi:10.1002/2014GL060238.

    Article  Google Scholar 

  • Lippiello, E., Marzocchi, W., de Arcangelis, L., & Godano, C. (2012). Spatial organization of foreshocks as a tool to forecast large earthquakes. Scientific Reports. doi:10.1038/srep00846.

    Article  Google Scholar 

  • Lomnitz, C. (1966). Magnitude stability in earthquake sequences. Bulletin of the Seismological Society of America 56, 247–249.

    Google Scholar 

  • Madariaga, R., Métois, M., Vigny, Ch., & Campos, J. (2010). Central Chile finally breaks. Science 328, 181–182. doi:10.1126/science.1189197.

    Article  Google Scholar 

  • Maeda, K. (1999). Time distribution of immediate foreshocks obtained by a stacking method. Pageoph 155(2–4), 381–394.

    Article  Google Scholar 

  • Main, I. (2000). Apparent breaks in scaling in the earthquake cumulative frequency-magnitude distribution: fact or artifact? Bulletin of the Seismological Society of America 90(1), 86–97.

    Article  Google Scholar 

  • Main, I., Meredith, Ph G, & Jones, C. (1989). A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics. Geophysical Journal International 96, 131–138.

    Article  Google Scholar 

  • Meng, L., Huang, H., Bürgmann, R., Ampuero, J.-P., & Strader, A. (2015). Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth and Planetary Science Letters 411, 177–187.

    Article  Google Scholar 

  • Michael, A. (2012). Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities. Bulletin of the Seismological Society of America. doi:10.1785/0120090184.

    Article  Google Scholar 

  • Mignan, A. (2014). The debate on the prognostic value of earthquake foreshocks: a meta-analysis. Scientific Reports. doi:10.1038/srep04099.

    Article  Google Scholar 

  • Mogi, K. (1963a). The fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena (second paper). Bull. Earthq. Res. Inst., Univ. Tokyo, 41, 595–614.

    Google Scholar 

  • Mogi, K. (1963b). Some discussion on aftershocks, foreshocks and earthquake swarms – the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena (third paper). Bulletin of the Earthquake Research Institute University of Tokyo 41, 615–658.

    Google Scholar 

  • Mogi, K. (1985). Earthquake Prediction. Tokyo: Academic Press. 355 pp.

    Google Scholar 

  • Molchan, G. M., Kronrod, T. L., & Nekrasona, A. K. (1999). Immediate foreshocks: time variation of the b-value. Physics of the Earth and Planetary Interiors 111, 229–240.

    Article  Google Scholar 

  • Nanjo, K. Z., Hirata, N., Obara, K., & Kasahara, K. (2012). Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes. Geophysical Reseach Letters. doi:10.1029/2012GL052997.

    Article  Google Scholar 

  • Nekrasova, A., Kossobokov, V., Peresan, A., Aoudia, A., & Panza, G. F. (2011). A multiscale application of the unified scaling law for earthquakes in the Central Mediterranean Area and Alpine Region. Pure and Applied Geophysics. doi:10.1007/s00024-010-0163-4).

    Article  Google Scholar 

  • Ogata, Y. (1998). Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics 50, 379–402.

    Article  Google Scholar 

  • Ogata, Y., Utsu, T., & Katsura, K. (1996). Statistical discrimination of foreshocks from other earthquake clusters. Geophysical Journal International 127, 17–30.

    Article  Google Scholar 

  • Papadopoulos, G. A., Charalampakis, M., Fokaefs, A., & Minadakis, G. (2010). Strong foreshock signal preceding the L’Aquila (Italy) earthquake (Mw 6.3) of 6 April 2009. Natural Hazards & Earth System Science 10, 19–24.

    Article  Google Scholar 

  • Papadopoulos, G. A., Drakatos, G., & Plessa, A. (2000). Foreshock activity as a precursor of strong earthquakes in Corinthos Gulf, Central Greece. Physics and Chemistry of the Earth 25, 239–245.

    Article  Google Scholar 

  • Papadopoulos, G. A., Latoussakis, I., Daskalaki, E., Diakogianni, G., Fokaefs, A., Kolligri, M., et al. (2006). The East Aegean Sea strong earthquake sequence of October–November 2005: lessons learned for earthquake prediction from foreshocks. Natural Hazards and Earth Systems Sciences 6, 895–901.

    Article  Google Scholar 

  • Papadopoulos, G.A., Minadakis, G. and Orfanogiannaki, K. (2009). The Prediction of the main shock from the algorithm FORMA: results from Greece and prospects for international testing. Seismol. Res. Lett., 80 (2), 375 (abstr.).

    Google Scholar 

  • Papazachos, B. C. (1974). Dependence of the seismic parameter b on the magnitude range. Pageoph 112, 1059–1065.

    Article  Google Scholar 

  • Papazachos, B. C. (1975). Foreshocks and earthquake prediction. Tectonophysics 28, 213–226.

    Article  Google Scholar 

  • Peng, Z. G., et al. (2007). Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. Journal of Geophysical Research-Solid Earth, 112(B3).

    Google Scholar 

  • Raleigh, B., Benett, G., Craig, H., et al. (1977). Prediction of the Haicheng earthquake. EOS Transactions, AGU 58, 236–272.

    Article  Google Scholar 

  • Ruiz, S., Metois, M., Fuenzalida, A. et al. (2014). Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake, Science. doi:10.1126/science.1256074.

    Article  Google Scholar 

  • Scholz, C. H. (1968). Microfractures, aftershocks, and seismicity. Bulletin of the Seismological Society of America 58, 1117–1130.

    Google Scholar 

  • Scholz, C. H. (1977). A physical interpretation of the Haicheng earthquake prediction. Nature 267, 121–124.

    Article  Google Scholar 

  • Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature 437, 539–542.

    Article  Google Scholar 

  • Schurr, B., Asch, G., Hainzl, S., et al. (2014). Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature. doi:10.1038/nature13681.

    Article  Google Scholar 

  • Schurr, B., Asch, G., Rosenau, M., Wang, R., Oncken, O., Barrientos, S., et al. (2012). The 2007 M7.7 Tocopilla northern Chile earthquake sequence: implications for along-strike and downdip rupture segmentation and megathrust frictional behavior. Journal Geophysical Research 117, B05305. doi:10.1029/2011JB009030.

    Article  Google Scholar 

  • Suyehiro, S. (1966). Difference between aftershocks and foreshocks in the relationship of magnitude to frequency of occurrence for the great Chilean earthquake of 1960. Bulletin of the Seismological Society of America 56, 185–200.

    Google Scholar 

  • Suyehiro, S., Asada, T., & Ohtake, M. (1964). Foreshocks and aftershocks accompanying a perceptible earthquake in central Japan. Meteor. Geophys. 15, 71–88.

    Article  Google Scholar 

  • Suyehiro, S., & Sekiya, H. (1972). Foreshocks and earthquake prediction. Tectonophysics 14, 219–225.

    Article  Google Scholar 

  • Utsu, T. (1965). A method for determining the value of b in a formula logN = a-bM showing the magnitude–frequency relation for earthquakes. Geophysical Bulletin Hokkaido University 13, 99–103. (in Japanese).

    Google Scholar 

  • Utsu, T. (1966). A statistical test of the difference in b-value between two earthquake groups. J. Physics Earth 14, 37–40.

    Article  Google Scholar 

  • Utsu, T. (1992). Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure and Applied Geophysics 155, 509–535.

    Article  Google Scholar 

  • Van Stiphout, Th, Schorlemmer, D., & Wiemer, S. (2011). The effect of uncertainties on estimates of background seismicity rate. Bulletin of the Seismological Society of America. doi:10.1785/0120090143.

    Article  Google Scholar 

  • Vidale, J., Mori, J., & Houston, H. (2001). Something wicked this way comes: clues from foreshocks and earthquake nucleation. EOS Transactions, AGU 82, 68.

    Article  Google Scholar 

  • Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal Geophysical Research 111, B05312. doi:10.1029/2005JB004034.

    Article  Google Scholar 

  • Wu, C., Meng, X., Peng, Z., & Ben-Zion, Y. (2014). Lack of spatiotemporal localization of foreshocks before the 1999 Mw 7.1 Düzce, Turkey, earthquake. Bulletin of the Seismological Society of America, 104, 560–566.

    Article  Google Scholar 

  • Wyss, M. (1997). Second round of evaluations of proposed earthquake precursors. Pure and Applied Geophysics, 149, 3–16.

    Article  Google Scholar 

  • Yagi, Y., Okuwaki, R., Enescu, B., et al. (2014). Rupture process of the 2014 Iquique Chile earthquake in relation with the foreshock activity. Geophysical Reseach Letters. doi:10.1002/2014GL060274.

    Article  Google Scholar 

  • Yamaoka, K., Ooida T. and Ueda Y. (1999). Detailed distribution of accelerating foreshocks before a M 5.1 earthquake in Japan. Pageoph, 155, 2–4, 335–353.

    Article  Google Scholar 

  • Yamashita, T. (1998). Simulation of seismicity due to fluid migration in a fault zone. Geophysical Journal International, 132, 674–686.

    Article  Google Scholar 

  • Zhuang, J., & Ogata, Y. (2006). Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks. Physical Review E. doi:10.1103/PhysRevE.73.046134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Papadopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Papadopoulos, G.A., Minadakis, G. (2016). Foreshock Patterns Preceding Great Earthquakes in the Subduction Zone of Chile. In: Bandy, W.L., Dañobeitia, J., Gutiérrez, C., Taran, Y., Bartolomé, R. (eds) Geodynamics of the Latin American Pacific Margin. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-51529-8_3

Download citation

Publish with us

Policies and ethics