Skip to main content

Origin and Function of the Renal Stroma in Health and Disease

  • Chapter
  • First Online:
Kidney Development and Disease

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 60))

Abstract

The renal stroma is defined as a heterogeneous population of cells that serve both as a supportive framework and as a source of specialized cells in the renal capsule, glomerulus, vasculature, and interstitium. In this chapter, we review published evidence defining what, where, and why stromal cells are important. We describe the functions of the renal stroma andhow stromal derivatives are crucial for normal kidney function. Next, we review the specification of stromal cells from the Osr1+ intermediate mesoderm and T+ presomitic mesoderm during embryogenesis and stromal cell differentiation. We focus on stromal signaling mechanisms that act in both a cell and non-cell autonomous manner in communication with the nephron progenitor and ureteric lineages. To conclude, stromal cells and the contribution of stromal cells to renal fibrosis and chronic kidney disease are described.

Christopher J. Rowan and Sepideh Sheybani-Deloui: These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Investig 116(3):663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Am S, Péault P, Jj M (2013) Renal pericytes: multifunctional cells of the kidneys. Pflugers Arch Eur J Physiol 465(6):767–773

    Article  Google Scholar 

  • Bagherie-Lachidan M, Reginensi A, Pan Q, Zaveri HP, Scott DA, Blencowe BJ, Helmbacher F, McNeill H (2015) Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 142(15):2564–2573

    Article  CAS  PubMed  Google Scholar 

  • Basta JM, Robbins L, Kiefer SM, Dorsett D, Rauchman M (2014) Sall1 balances self-renewal and differentiation of renal progenitor cells. Development 141(5):1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, Costantini F, Mendelsohn C (2001) Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet 27(1):74–78

    Article  CAS  PubMed  Google Scholar 

  • Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP et al (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37(10):1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Bohnenpoll T, Bettenhausen E, Weiss A-C, Foik AB, Trowe M-O, Blank P, Airik R, Kispert A (2013) Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev Biol 380(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Boivin FJ, Sarin S, Dabas P, Karolak M, Oxburgh L, Bridgewater D (2016) Stromal β-catenin overexpression contributes to the pathogenesis of renal dysplasia. J Pathol 239(2):174–185

    Article  CAS  PubMed  Google Scholar 

  • Boivin FJ, Sarin S, Lim J, Javidan A, Svajger B, Khalili H, Bridgewater D (2015) Stromally expressed β-catenin modulates Wnt9b signaling in the ureteric epithelium. PLoS One 10(3):e0120347

    Article  PubMed  PubMed Central  Google Scholar 

  • Boor P, Floege J (2012) The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant 27(8):3027–3036

    Article  PubMed  Google Scholar 

  • Boyle SC, Liu Z, Kopan R (2014) Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development 141(2):346–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. PNAS 110(12):4640–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll TJ, Park J-S, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9(2):283–292

    Article  CAS  PubMed  Google Scholar 

  • Caspary T, Cleary MA, Perlman EJ, Zhang P, Elledge SJ, Tilghman SM (1999) Oppositely imprinted genes p57Kip2 and Igf2 interact in a mouse model for Beckwith–Wiedemann syndrome. Genes Dev 13(23):3115–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-T, Chang F, Wu C-F, Chou Y, Hsu H, Chiang W, Shen J, Chen Y, Wu K, Tsai T et al (2011) Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 80(11):1170–1181

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Truong LD, Wu X, Kuhl D, Lang F, Du J (2010) Serum- and glucocorticoid-regulated kinase 1 is upregulated following unilateral ureteral obstruction causing epithelial-mesenchymal transition. Kidney Int 78(7):668–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui S, Schwartz L, Quaggin SE (2003) Pod1 isuri required in stromal cells for glomerulogenesis. Dev Dyn 226(3):512–522

    Article  CAS  PubMed  Google Scholar 

  • Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentation. Nat Cell Biol 15(9):1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson TP, Gandhi R, Le Hir M, Kaissling B (1989) Ecto-5′-nucleotidase: localization in rat kidney by light microscopic histochemical and immunohistochemical methods. J Histochem Cytochem 37(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • DiRocco DP, Kobayashi A, Taketo MM, McMahon AP, Humphreys BD (2013) Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J Am Soc Nephrol 24(9):1399–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  PubMed  Google Scholar 

  • Dufourcq P, Couffinhal T, Ezan J, Barandon L, Moreau C, Daret D, Duplàa C (2002) FrzA, a secreted frizzled related protein, induced angiogenic response. Circulation 106(24):3097–3103

    Article  PubMed  Google Scholar 

  • Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipilä P, West KA, McMahon AP, Humphreys BD (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180(4):1441–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol 11(4):233–244

    Article  CAS  PubMed  Google Scholar 

  • Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, Brown AC, Oxburgh L (2014) FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 141(1):17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotter R (ed) (2008) Pediatric uroradiology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Gaengel K, Genové G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638

    Article  CAS  PubMed  Google Scholar 

  • Gong K-Q, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27(21):7661–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grgic I, Duffield JS, Humphreys BD (2012) The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol 27(2):183–193

    Article  PubMed  Google Scholar 

  • Grgic I, Krautzberger AM, Hofmeister A, Lalli M, DiRocco DP, Fleig SV, Liu J, Duffield JS, McMahon AP, Aronow B et al (2014) Translational profiles of medullary myofibroblasts during kidney fibrosis. J Am Soc Nephrol 25(9):1979–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Guillaume R, Bressan M, Herzlinger D (2009) Paraxial mesoderm contributes stromal cells to the developing kidney. Dev Biol 329(2):169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10(12):1467–1478

    Article  CAS  PubMed  Google Scholar 

  • He J, Sheng T, Stelter AA, Li C, Zhang X, Sinha M, Luxon BA, Xie J (2006) Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J Biol Chem 281(47):35598–35602

    Article  CAS  PubMed  Google Scholar 

  • Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S (2014) Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One 9(2):e88400

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD, Lin S, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, Mcmahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, Selleri L, Herzlinger D (2015) Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development 142(15):2653–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itäranta P, Chi L, Seppänen T, Niku M, Tuukkanen J, Peltoketo H, Vainio S (2006) Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney. Dev Biol 293(2):473–483

    Article  PubMed  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Investig 110(3):341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133(15):2995–3004

    Article  CAS  PubMed  Google Scholar 

  • Kanda S, Tanigawa S, Ohmori T, Taguchi A, Kudo K, Suzuki Y, Sato Y, Hino S, Sander M, Perantoni AO et al (2014) Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J Am Soc Nephrol 25(11):2584–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41(7):793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ (2011) Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138(7):1247–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB et al (2016) Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest 126(5):1926–1938

    Article  Google Scholar 

  • Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep 3(4):650–662

    Article  CAS  Google Scholar 

  • Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O, Wongboonsin J, Ikeda Y, Heckl D, Chang SL et al (2015a) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125(8):2935–2951

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015b) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16(1):51–66

    Article  CAS  PubMed  Google Scholar 

  • Le Hir M, Kaissling B (1989) Distribution of 5′-nucleotidase in the renal interstitium of the rat. Cell Tissue Res 258(1):177–182

    Article  CAS  PubMed  Google Scholar 

  • Le Hir M, Kaissling B (1993) Distribution and regulation of renal ecto-5′-nucleotidase: implications for physiological functions of adenosine. Am J Physiol 264(3 Pt 2):F377–F387

    CAS  PubMed  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19(8):1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leimeister C, Bach A, Gessler M (1998) Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled related protein family. Mech Dev 75(1–2):29–42

    Article  CAS  PubMed  Google Scholar 

  • Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL (2005) Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132(3):529–539

    Article  CAS  PubMed  Google Scholar 

  • Li W, Hartwig S, Rosenblum ND (2014) Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn 243(7):853–863

    Article  PubMed  Google Scholar 

  • Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176(4):1767–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, Soriano P, Betsholtz C (1998) Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 125(17):3313–3322

    CAS  PubMed  Google Scholar 

  • Mao Y, Francis-West P, Irvine KD (2015) Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142(15):2574–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD (2011) Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138(5):947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marxer-Meier A, Hegyi I, Loffing J, Kaissling B (1998) Postnatal maturation of renal cortical peritubular fibroblasts in the rat. Anat Embryol 197:143–153

    Article  CAS  Google Scholar 

  • McNeill H (2009) Planar cell polarity and the kidney. J Am Soc Nephrol 20(10):2104–2111

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn C, Mark M, Dollé P, Dierich A, Gaub MP, Krust A, Lampron C, Chambon P (1994a) Retinoic acid receptor beta 2 (RAR beta 2) null mutant mice appear normal. Dev Biol 166(1):246–258

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn C, Lohnes D, Décimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994b) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120(10):2749–2771

    CAS  PubMed  Google Scholar 

  • Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 1148:1139–1148

    Google Scholar 

  • Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2003) Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int 63(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324(1):88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa N, Xin C, Roach AM, Naiman N, Shankland SJ, Ligresti G, Ren S, Szak S, Gomez IG, Duffield JS (2015) Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis. Kidney Int 87(6):1125–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemes B, Kanyári Z, Zádori G, Zsom L, Berhés M, Hamar M, Kóbor K, Péter A (2015) Horseshoe kidney transplantation. Intervent Med Appl Sci 7(2):85–89

    Article  Google Scholar 

  • Ohmori T, Tanigawa S, Kaku Y, Fujimura S (2015) Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors. Sci Rep 5:1–11

    Google Scholar 

  • Oxburgh L, Brown AC, Muthukrishnan SD, Fetting JL (2014) Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr Nephrol 29(4):531–536

    Article  PubMed  Google Scholar 

  • Park J-S, Ma W, O’Brien LL, Chung E, Guo J-J, Cheng J-G, Valerius MT, McMahon JA, Wong WH, McMahon AP (2012) Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 23(3):637–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-S, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134(13):2533–2539

    Article  CAS  PubMed  Google Scholar 

  • Paroly SS, Wang F, Spraggon L, Merregaert J, Batourina E, Tycko B, Schmidt-Ott KM, Grimmond S, Little M, Mendelsohn C (2013) Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS One 8(12):e84155

    Article  PubMed  PubMed Central  Google Scholar 

  • Phua YL, Chu JYS, Marrone AK, Bodnar AJ, Sims-Lucas S, Ho J (2015) Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival. Physiol Rep 3(10):e12537

    Article  PubMed  PubMed Central  Google Scholar 

  • Quaggin SE, Kreidberg JA (2008) Development of the renal glomerulus: good neighbors and good fences. Development 135(4):609–620

    Article  CAS  PubMed  Google Scholar 

  • Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J (1999) The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 126(24):5771–5783

    CAS  PubMed  Google Scholar 

  • Ranghini EJ, Dressler GR (2015) Evidence for intermediate mesoderm and kidney progenitor cell specification by Pax2 and PTIP dependent mechanisms. Dev Biol 399(2):296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock R, Schrauth S, Gessler M (2005) Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev Dyn 234(3):747–755

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MM (2014) Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal Pediatr Pathol 33(5–6):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P et al (2010) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137(2):283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40(8):1010–1015

    Article  CAS  PubMed  Google Scholar 

  • Schnabel CA, Godin RE, Cleary ML (2003) Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 254(2):262–276

    Article  CAS  PubMed  Google Scholar 

  • Schnabel CA, Selleri L, Jacobs Y, Warnke R, Cleary ML (2001) Expression of Pbx1b during mammalian organogenesis. Mech Dev 100(1):131–135

    Article  CAS  PubMed  Google Scholar 

  • Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122(6):1919–1929

    CAS  PubMed  Google Scholar 

  • Sequeira Lopez MLS, Gomez RA (2011) Development of the renal arterioles. J Am Soc Nephrol 22(12):2156–2165

    Article  PubMed  PubMed Central  Google Scholar 

  • Sequeira Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol Renal Physiol 281(2):F345–F356

    Article  CAS  PubMed  Google Scholar 

  • Sequeira-Lopez MLS, Lin EE, Li M, Hu Y, Sigmund CD, Gomez RA (2015) The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Physiol Regul Integr Comp Physiol 308(2):R138–R149

    Article  CAS  PubMed  Google Scholar 

  • Shawber CJ, Kitajewski J (2004) Notch function in the vasculature: insights from zebrafish, mouse and man. BioEssays 26(3):225–234

    Article  CAS  PubMed  Google Scholar 

  • Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, Gittes G, Bates CM (2013) Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One 8(6):e65993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372(6507):679–683

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14(1):53–67

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Little MH (2015) The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 142(11):1937–1947

    Article  CAS  PubMed  Google Scholar 

  • Trevant B, Gaur T, Hussain S, Symons J, Komm BS, Bodine PVN, Stein GS, Lian JB (2008) Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J Cell Physiol 217(1):113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weizer AZ, Silverstein AD, Auge BK, Delvecchio FC, Raj G, Albala DM, Leder R, Preminger GM (2003) Determining the incidence of horseshoe kidney from radiographic data at a single institution. J Urol 170(5):1722–1726

    Article  PubMed  Google Scholar 

  • Xu J, Wong EYM, Cheng C, Li J, Sharkar MTK, Xu CY, Chen B, Sun J, Jing D, Xu P-X (2014a) Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev Cell 31(4):434–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Nie X, Cai X, Cai CL, Xu PX (2014b) Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev Biol 391(1):17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yallowitz AR, Hrycaj SM, Short KM, Smyth IM, Wellik DM (2011) Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS One 6(8):e23410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino K, Rubin JS, Higinbotham KG, Ãœren A, Anest V, Plisov SY, Perantoni AO (2001) Secreted frizzled-related proteins can regulate metanephric development. Mech Dev 102(1–2):45–55

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136(1):161–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institute of Health Research, the Kidney Foundation of Canada and the Canada Research Chairs Program (to NDR), the Natural Sciences and Engineering Research Council of Canada (to SS), and the Research Training Centre at The Hospital for Sick Children (to CR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Rosenblum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rowan, C.J., Sheybani-Deloui, S., Rosenblum, N.D. (2017). Origin and Function of the Renal Stroma in Health and Disease. In: Miller, R. (eds) Kidney Development and Disease. Results and Problems in Cell Differentiation, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-51436-9_8

Download citation

Publish with us

Policies and ethics