Skip to main content

Fabrication and Characterizations of Bi2Te3 Based Topological Insulator Nanomaterials

  • Chapter
  • First Online:
Outlook and Challenges of Nano Devices, Sensors, and MEMS

Abstract

In this manuscript, recent experimental research progresses in topological insulators Bi2Se3 and Bi2Te3 based nanostructures are presented, with a focus on nanoflakes, nanoplates, nanosheets, nanowires, and thin films of Bi2Te3 based topological insulator materials. Among the various synthesis methods, the chemical vapor deposition (CVD) method is described here as an example for the synthesis of topological insulator nanomaterials. The Raman spectroscopy and electrical transport characterizations are discussed on a few different types of topological insulators, such as binary/ternary/quaternary compound and elementally-doped nanostructures and films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.Z. Hasan et al., Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010)

    Article  Google Scholar 

  2. J.E. Moore, The birth of topological insulators. Nature 464(7286), 194–196 (2010)

    Article  Google Scholar 

  3. H. Zhang et al., Topological insulators in Bi2Te3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5(6), 438–442 (2009)

    Article  Google Scholar 

  4. B.A. Bernevig et al., Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006)

    Article  Google Scholar 

  5. D. Hsieh et al., A topological Dirac insulator in a quantum spin Hall phase. Nature 452(7190), 970–9U5 (2008)

    Article  Google Scholar 

  6. J. Kampmeier et al., Suppressing twin domains in molecular beam epitaxy grown Bi2Te3 topological insulator thin films. Cryst. Growth Des. 15(1), 390–394 (2015)

    Article  Google Scholar 

  7. S. Cho et al., Antisite defects of Bi2Te3 thin films. Appl. Phys. Lett. 75(10), 1401–1403 (1999)

    Article  Google Scholar 

  8. J. Zhang et al., Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011)

    Article  Google Scholar 

  9. Z. Aabdin et al., Sb2Te3 and Bi2Te3 thin films grown by room-temperature MBE. J. Electron. Mater. 41(6), 1493 (2012)

    Article  Google Scholar 

  10. S. Shimizu et al., Gate control of surface transport in MBE-grown topological insulator (Bi1-xSbx)2Te3 thin films. Phys. Rev. B 86(4), 045319 (2012)

    Article  Google Scholar 

  11. H.T. He et al., Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 106(16), 166805 (2011)

    Article  Google Scholar 

  12. N.V. Tarakina et al., Comparative study of the microstructure of Bi2Te3 Thin Films Grown on Si(111) and InP(111) Substrates. Cryst. Growth Des. 12(4), 2012 (1913-1918)

    Google Scholar 

  13. Z. Xu et al., Anisotropic topological surface states on high-index Bi2Se3 films. Adv. Mater. 25(11), 1557–1562 (2013)

    Article  Google Scholar 

  14. G. Zhang et al., Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv. Funct. Mater. 21(12), 2351–2355 (2011)

    Article  Google Scholar 

  15. L. Plucinski et al., Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy. Appl. Phys. Lett. 98(22), 222503 (2011)

    Article  Google Scholar 

  16. R.K. Gopal et al., Weak-antilocalization and surface dominated transport in topological insulator Bi2Se2Te. AIP Adv. 5(4), 047111 (2015)

    Article  Google Scholar 

  17. P. Roushan et al., Topological surface states protected from backscattering by chiral spin texture. Nature 460(7259), 1106–1U64 (2009)

    Article  Google Scholar 

  18. Z. Alpichshev et al., STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 104(1), 016401 (2010)

    Article  Google Scholar 

  19. J.J. Cha et al., Weak antilocalization in Bi2(SexTe1-x)3 nanoribbons and nanoplates. Nano Lett. 12(2), 1107–1111 (2012)

    Article  Google Scholar 

  20. L. Bao et al., Weak Anti-localization and quantum oscillations of surface states in topological insulator Bi2Se2Te. Sci. Rep. 2, 726 (2012)

    Article  Google Scholar 

  21. H.L. Cao, R. Venkatasubramanian, et al., Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Appl. Phys. Lett. 101(16), 162104 (2012)

    Article  Google Scholar 

  22. Z.H. Wang, L. Richard, J. Qiu, et al., Ambipolar surface conduction in ternary topological insulator Bi2(Te1-xSex)3 nanoribbons. ACS Nano 7(3), 2126–2131 (2013)

    Article  Google Scholar 

  23. D. Hsieh, Y. Xia, et al., A tunable topological insulator in the spin helical Dirac transport regime. Nature 460(7259), 1101–1U59 (2009)

    Article  Google Scholar 

  24. D.S. Kong et al., Topological insulator nanowires and nanoribbons. Nano Lett. 10(1), 329–333 (2010)

    Article  Google Scholar 

  25. B. Yu et al., Chemical assembly and electrical characteristics of surface-rich topological insulator Bi2Te3 nanoplates and nanoribbons. Appl. Phys. Lett. 101(14), 143103 (2012)

    Article  Google Scholar 

  26. G. Ramanath et al., Microsphere bouquets of bismuth telluride nanoplates: room-temperature synthesis and thermoelectric properties. J. Phys. Chem. C 114(4), 1796–1799 (2010)

    Article  Google Scholar 

  27. K. Kern et al., Two-dimensional magnetotransport in Bi2Te2Se nanoplatelets. Appl. Phys. Lett. 101(2), 023116 (2012)

    Article  Google Scholar 

  28. Z.F. Liu et al., Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 10(8), 2870–2876 (2010)

    Article  Google Scholar 

  29. J.G. Checkelsky et al., Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett. 106(19), 196801 (2011)

    Article  Google Scholar 

  30. L. Lu et al., Proximity effect at superconducting Sn-Bi2Te3 interface. Phys. Rev. B 85(10), 104508 (2012)

    Article  Google Scholar 

  31. Q.H. Xiong et al., Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites. Nano Lett. 12(3), 1203–1209 (2012)

    Article  Google Scholar 

  32. D.S. Kong et al., Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10(6), 2245–2250 (2010)

    Article  Google Scholar 

  33. Y.Y. Li et al., Intrinsic topological insulator Bi2Te3 thin films on si and their thickness limit. Adv. Mater. 22(36), 4002–4007 (2010)

    Article  Google Scholar 

  34. A. Kapitulnik et al., Weak localization effects as evidence for bulk quantization in Bi2Te3 thin films. Phys. Rev. B 88(12), 121103 (2013)

    Article  Google Scholar 

  35. M.R. Lang et al., Revelation of topological surface states in Bi2Se3 thin films by in situ al passivation. ACS Nano 6(1), 295–302 (2012)

    Article  Google Scholar 

  36. K. He et al., From magnetically doped topological insulator to the quantum anomalous hall effect. Chin. Phys. B 22(6), 067305 (2013)

    Article  Google Scholar 

  37. X.F. Kou et al., Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett. 13(10), 4587–4593 (2013)

    Article  Google Scholar 

  38. H.B. Zhang et al., High-performance Bi2Te3-based topological insulator film magnetic field detector. ACS Appl. Mater. Interfaces 5(22), 11503–11508 (2013)

    Article  Google Scholar 

  39. H.B. Zhang et al., Magnetoresistance switch effect of a sn-doped Bi2Te3 topological insulator. Adv. Mater. 24(1), 132 (2012)

    Article  Google Scholar 

  40. R.J. Cava et al., A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J. Appl. Phys. 114(11), 114907 (2013)

    Article  Google Scholar 

  41. Y.L. Chen et al., Observing electronic structures on ex-situ grown topological insulator thin films. Phys. Status Solidi-Rapid. Res. Lett. 7(1–2), 130–132 (2013)

    Google Scholar 

  42. A.A. Balandin, Crystal symmetry breaking in few-quintuple Bi2Te3 films: applications in nanometrology of topological insulators. Appl. Phys. Lett. 96(15), 153103 (2010)

    Article  Google Scholar 

  43. C.H. Lee et al., Metal-insulator transition in variably doped (Bi1-xSbx)2Se3 nanosheets. Nanoscale 5(10), 4337–4343 (2013)

    Article  Google Scholar 

  44. R. He et al., Observation of infrared-active modes in Raman scattering from topological insulator nanoplates. Nanotechnology 23(45), 455703 (2012)

    Article  Google Scholar 

  45. Z.H. Wang et al., Linear magnetoresistance versus weak antilocalization effects in Bi2Te3. Nano Res. 8(9), 2963–2969 (2015)

    Article  Google Scholar 

  46. Z.H. Wang et al., Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films. Nano Lett. 14(11), 6510–6514 (2014)

    Article  Google Scholar 

  47. Z.Y. Fan et al., Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21(37), 3730–3743 (2009)

    Article  Google Scholar 

  48. R. He et al., Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates. Nano Res. 8(3), 851–859 (2015)

    Article  Google Scholar 

  49. J. Zhang et al., Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 11(6), 2407–2414 (2011)

    Article  Google Scholar 

  50. J.H. Guo et al., Growth and microstructures of ultrathin Bi2Te3 nanoplates by modified hot wall epitaxy. Nano 9(6), 1450056 (2014)

    Article  Google Scholar 

  51. M. Zhao, M. Bosman, M. Danesh, et al., visible surface plasmon modes in single Bi2Te3 nanoplate. Nano Lett. 15(12), 8331–8335 (2015)

    Article  Google Scholar 

  52. X. He, H. Zhang, W. Lin, et al., PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser. Sci. Rep. 5, 15868 (2015)

    Article  Google Scholar 

  53. B. Liu, W.Y. Xie, H. Li, et al., Surrounding sensitive electronic properties of Bi2Te3 nanoplates-potential sensing applications of topological insulators. Sci. Rep. 4, 4639 (2014)

    Google Scholar 

  54. D.S. Kong et al., Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5(6), 4698–4703 (2011)

    Article  Google Scholar 

  55. D.X. Qu et al., Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 329(5993), 821–824 (2010)

    Article  Google Scholar 

  56. S.S. Hong et al., Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 10(8), 3118–3122 (2010)

    Article  Google Scholar 

  57. H. Tang et al., Two-dimensional transport—induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5(9), 7510–7516 (2011)

    Article  Google Scholar 

  58. Y. Yan et al., Large magnetoresistance in high mobility topological insulator Bi2Te3. Appl. Phys. Lett. 103(3), 033106 (2013)

    Article  Google Scholar 

  59. D.P. Yu et al., Synthesis and quantum transport properties of Bi2Se3 topological insulator nanostructures. Sci. Rep. 3, 1264 (2013)

    Google Scholar 

  60. L. Lu et al., Coexistence of bulk and surface shubnikov-de haas oscillations in Bi2Se3. J. Low Temp. Phys. 170(5–6), 397–402 (2013)

    Google Scholar 

  61. H.L. Peng et al., Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 9(3), 225–229 (2010)

    MathSciNet  Google Scholar 

  62. S. Cho et al., Insulating behavior in ultrathin bismuth selenide field effect transistors. Nano Lett. 11(5), 1925–1927 (2011)

    Article  Google Scholar 

  63. D. Kim et al., Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 8(6), 459–463 (2012)

    Google Scholar 

  64. D. Kim et al., Intrinsic electron-phonon resistivity of Bi2Te3 in the topological regime. Phys. Rev. Lett. 109(15), 166801 (2012)

    Article  Google Scholar 

  65. F.X. Xiu et al., Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 6(4), 216–221 (2011)

    Article  Google Scholar 

  66. Y. Wang et al., Gate-controlled surface conduction in na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 12(3), 1170–1175 (2012)

    Article  Google Scholar 

  67. Y. Yan et al., Synthesis and field emission properties of topological insulator Bi2Se3 nanoflake arrays. Nanotechnology 23(30), 305704 (2012)

    Article  Google Scholar 

  68. Y. Xia et al., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5(6), 398–402 (2009)

    Article  Google Scholar 

  69. M.Z. Hasan et al., A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat. Phys. 7(1), 32–37 (2011)

    Article  Google Scholar 

  70. D.S. Dessau et al., Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nat. Phys. 9(8), 499–504 (2013)

    Article  Google Scholar 

  71. A. Yazdani et al., Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 7(12), 939–943 (2011)

    Article  Google Scholar 

  72. K. Kern et al., Growth of high-mobility Bi2Te2Se nanoplatelets on hBN sheets by van der waals epitaxy. Nano Lett. 12(10), 5137–5142 (2012)

    Article  Google Scholar 

  73. N. Samarth et al., Superconducting proximity effect and possible evidence for Pearl vortices in a candidate topological insulator. Phys. Rev. B 84(16), 165120 (2011)

    Article  Google Scholar 

  74. B. Xia et al., Indications of surface-dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te1.8Se1.2. Phys. Rev. B 87(8), 085442 (2013)

    Article  Google Scholar 

  75. T.C. Hsiung et al., Enhanced surface mobility and quantum oscillations in topological insulator Bi1.5Sb0.5Te1.7Se1.3 nanoflakes. Appl. Phys. Lett. 103(16), 163111 (2013)

    Article  Google Scholar 

  76. Z.Y. Wang et al., Tuning carrier type and density in Bi2Se3 by Ca-doping. Appl. Phys. Lett. 97(4), 042112 (2010)

    Article  Google Scholar 

  77. Z.G. Chen et al., Paramagnetic Cu-doped Bi2Te3 nanoplates. Appl. Phys. Lett. 104(5), 053105 (2014)

    Article  Google Scholar 

  78. Q. Liu et al., Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102(15), 156603 (2009)

    Article  Google Scholar 

  79. L. Cheng et al., High curie temperature Bi1.85Mn0.15Te3 nanoplates. J. Am. Chem. Soc. 134(46), 18920–18923 (2012)

    Article  Google Scholar 

  80. J.J. Cha et al., Effects of magnetic doping on weak antilocalization in narrow Bi2Se3 nanoribbons. Nano Lett. 12(8), 4355–4359 (2012)

    Article  Google Scholar 

  81. J.J. Cha et al., Magnetic doping and kondo effect in Bi2Se3 nanoribbons. Nano Lett. 10(3), 1076–1081 (2010)

    Article  Google Scholar 

  82. F. Qu et al., Strong superconducting proximity effect in PbBi2Te3 hybrid structures. Sci. Rep. 2, 339 (2012)

    Article  Google Scholar 

  83. G.H. Zhang et al., Quintuple-layer epitaxy of thin films of topological insulator Bi2Te3. Appl. Phys. Lett. 95(5), 053114 (2009)

    Article  Google Scholar 

  84. C.L. Song et al., Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl. Phys. Lett. 97(14), 143118 (2010)

    Article  Google Scholar 

  85. G. Wang et al., Topological insulator thin films of Bi2Te3 with controlled electronic structure. Adv. Mater. 23(26), 2929–2932 (2011)

    Article  Google Scholar 

  86. Y. Liu et al., Interfacial bonding and structure of Bi2Te3 topological insulator films on Si(111) determined by surface x-ray scattering. Phys. Rev. Lett. 110(22), 226103 (2013)

    Article  Google Scholar 

  87. P.P.J. Haazen et al., Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3. Appl. Phys. Lett. 100(8), 082404 (2012)

    Article  Google Scholar 

  88. H.W. Liu et al., Growth of topological insulator Bi2Te3 ultrathin films on Si(111) investigated by low-energy electron microscopy. Cryst. Growth Des. 10(10), 4491–4493 (2010)

    Article  Google Scholar 

  89. V. Goyal et al., Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl. Phys. Lett. 97(13), 133117 (2010)

    Article  Google Scholar 

  90. K.M.F. Shahil et al., Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. J. Appl. Phys. 111(5), 054305 (2012)

    Article  Google Scholar 

  91. H.B. Zhang et al., Experimental evidence of the nanoscaled topological metallic surface state of Bi2Te3 and Sb2Te3 films. Europhys. Lett. 95(5), 56002 (2011)

    Article  Google Scholar 

  92. X.X. Yu et al., Separation of top and bottom surface conduction in Bi2Te3 thin films. Nanotechnology 24(1), 015705 (2013)

    Article  Google Scholar 

  93. M. Chen et al., Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3: a scanning tunneling microscopy study. Appl. Phys. Lett. 101(8), 081603 (2012)

    Article  Google Scholar 

  94. H.T. He et al., High-field linear magneto-resistance in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 100(3), 032105 (2012)

    Article  Google Scholar 

  95. S.X. Zhang et al., Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 101(20), 202403 (2012)

    Article  Google Scholar 

  96. B.F. Gao et al., Gate-controlled linear magnetoresistance in thin Bi2Se3 sheets. Appl. Phys. Lett. 100(21), 212402 (2012)

    Article  Google Scholar 

  97. S. Hikami et al., Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63(2), 707–710 (1980)

    Article  Google Scholar 

  98. X. He et al., Highly tunable electron transport in epitaxial topological insulator (Bi1-xSbx)2Te3 thin films. Appl. Phys. Lett. 101(12), 123111 (2012)

    Article  Google Scholar 

  99. L. He et al., Evidence of the two surface states of (Bi0.53Sb0.47)2Te3 films grown by van der Waals epitaxy. Sci. Rep. 3, 3406 (2013)

    Google Scholar 

  100. M. Lang et al., Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett. 13(1), 48–53 (2013)

    Article  Google Scholar 

  101. X.G. Zhu et al., Doping nature of Cu in epitaxial topological insulator Bi2Te3 thin films. Surf. Sci. 617, 156–161 (2013)

    Article  Google Scholar 

  102. Y.L. Wang et al., Structural defects and electronic properties of the Cu-doped topological insulator Bi2Se3. Phys. Rev. B 84(7), 075335 (2011)

    Article  Google Scholar 

  103. A. Ribak et al., Internal pressure in superconducting Cu-intercalated Bi2Se3. Phys. Rev. B 93(6), 064505 (2016)

    Article  Google Scholar 

  104. H.B. Zhang et al., Robust topological surface transport with weak localization bulk channels in polycrystalline Bi2Te3 films. J. Phys. D Appl. Phys. 49(9), 095003 (2016)

    Article  Google Scholar 

  105. H.B. Zhang et al., Weak localization bulk state in a topological insulator Bi2Te3 film. Phys. Rev. B 86(7), 075102 (2012)

    Article  Google Scholar 

  106. Q. Yang et al., Emerging weak localization effects on a topological insulator–insulating ferromagnet (Bi2Se3-EuS) interface. Phys. Rev. B 88(8), 081407 (2013)

    Article  Google Scholar 

  107. L. Wu et al., A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−xInx)2Se3. Nat. Phys. 9(7), 410–414 (2013)

    Article  Google Scholar 

  108. M. Brahlek et al., Topological-metal to band-insulator transition in (Bi1−xInx)2Se3 thin films. Phys. Rev. Lett. 109(18), 186403 (2012)

    Article  Google Scholar 

  109. M.H. Liu et al., Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108(3), 036805 (2012)

    Article  Google Scholar 

  110. D.M. Zhang et al., Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys. Rev. B 86(20), 205127 (2012)

    Article  Google Scholar 

  111. I. Vobornik et al., Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano Lett. 11(10), 4079–4082 (2011)

    Article  Google Scholar 

  112. C.L. Song et al., Gating the charge state of single Fe dopants in the topological insulator Bi2Te3 with a scanning tunneling microscope. Phys. Rev. B 86(4), 045441 (2012)

    Article  Google Scholar 

  113. D. West et al., Identification of magnetic dopants on the surfaces of topological insulators: experiment and theory for Fe on Bi2Te3 (111). Phys. Rev. B 85(8), 081305 (2012)

    Article  Google Scholar 

  114. J.S. Zhang et al., Topology-driven magnetic quantum phase transition in topological insulators. Science 339(6127), 1582–1586 (2013)

    Article  Google Scholar 

  115. X.F. Kou et al., Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano 7(10), 9205–9212 (2013)

    Article  Google Scholar 

  116. C.Z. Chang et al., Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25(7), 1065–1070 (2013)

    Article  Google Scholar 

  117. J. Wang et al., Quantum anomalous Hall effect in magnetic topological insulators. Phys. Scr. T164, 014003 (2015)

    Article  Google Scholar 

  118. R. Yu et al., Quantized anomalous Hall effect in magnetic topological insulators. Science 329(5987), 61–64 (2010)

    Article  Google Scholar 

  119. C.Z. Chang et al., Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129), 167–170 (2013)

    Article  Google Scholar 

  120. J.G. Checkelsky et al., Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10(10), 731–736 (2014)

    Google Scholar 

  121. X. Kou et al., Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113(13), 137201 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Rui He, CheeHuei Lee, Dong Liang, Richard L.J. Qiu, Mohan Sankaran, Hao Tang for collaborations. Z.D. Zhang and Z.H. Wang thank the National Natural Science Foundation of China with Grant No. 51331006 and 51522104. X.P.A. Gao thanks the National Science Foundation (DMR-1151534) of U.S. for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, Z.H., Gao, X.P.A., Zhang, Z.D. (2017). Fabrication and Characterizations of Bi2Te3 Based Topological Insulator Nanomaterials. In: Li, T., Liu, Z. (eds) Outlook and Challenges of Nano Devices, Sensors, and MEMS. Springer, Cham. https://doi.org/10.1007/978-3-319-50824-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50824-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50822-1

  • Online ISBN: 978-3-319-50824-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics