Skip to main content

Osseointegration and the Biology of Peri-implant Hard and Soft Tissues

  • Chapter
  • First Online:
  • 2457 Accesses

Abstract

Restoration of missing teeth in the aesthetic zone with oral implants is a complex combination of surgical and restorative techniques along with medical device designs that optimizes the potential of biology to both rapidly heal and maintain long-term hard and soft tissue health around the implant. Rapid expansion of our knowledge regarding wound healing is allowing this knowledge to be applied to implant designs, enabling a more rapid and predicable use of oral implants in the aesthetic zone. As important as biology is for bone wound healing, the response of the mucosal soft tissue will be the most dominant aspect of the result observed by the patient. Care in planning and execution of the implant procedure is needed along with careful development of a concave transition zone from the head of the implant to the restorative margin for predicable stability of soft tissues. Through a combination of innovative biomedical device designs, clinical diagnosis, careful surgical management, and detailed understanding of the restorative aspects will allow for the provision of optimal patient care in the aesthetic zone.

This is a preview of subscription content, log in via an institution.

References

  • Abuhussein H, Pagni G, Rebaudi A, Wang HL (2010) The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 21(2):129–136

    Article  PubMed  Google Scholar 

  • Albrektsson T, Sennerby L (1991) State of the art in oral implants. J Clin Periodontol 18(6):474–481

    Article  PubMed  Google Scholar 

  • Arnhart C, Kielbassa AM, Martinez-de Fuentes R, Goldstein M, Jackowski J, Lorenzoni M, Maiorana C, Mericske-Stern R, Pozzi A, Rompen E, Sanz M, Strub JR (2012) Comparison of variable-thread tapered implant designs to a standard tapered implant design after immediate loading. A 3-year multicentre randomised controlled trial. Eur J Oral Implantol 5(2):123–136

    PubMed  Google Scholar 

  • Atieh MA, Zadeh H, Stanford CM, Cooper LF (2012) Survival of short dental implants for treatment of posterior partial edentulism: a systematic review. Int J Oral Maxillofac Implants 27(6):1323–1331

    PubMed  Google Scholar 

  • Aubin JE, Liu F, Malaval L, Gupta AK (1995) Osteoblast and chondroblast differentiation. Bone 17(2 Suppl):77S–83S

    Article  PubMed  Google Scholar 

  • Ausiello P, Franciosa P, Martorelli M, Watts DC (2012) Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method. Dent Mater 28(8):919–927

    Article  PubMed  Google Scholar 

  • Balasundaram G, Webster TJ (2007) An overview of nano-polymers for orthopedic applications. Macromol Biosci 7(5):635–642

    Article  PubMed  Google Scholar 

  • Balasundaram G, Yao C, Webster TJ (2007) TiO(2) nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 84(2):447–453

    Article  Google Scholar 

  • Barwacz CA, Stanford CM, Diehl UA, Qian F, Cooper LF, Feine J, McGuire M (2015) Electronic assessment of peri-implant mucosal esthetics around three implant-abutment configurations: a randomized clinical trial. Clin Oral Implants Res. 27(6):707–715

    Article  PubMed  Google Scholar 

  • Berglundh T, Abrahamsson I, Lindhe J (2005) Bone reactions to longstanding functional load at implants: an experimental study in dogs. J Clin Periodontol 32(9):925–932

    Article  PubMed  Google Scholar 

  • Berglundh T, Persson L, Klinge B (2002) A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 29(Suppl 3):197–212 ; discussion 232–193

    Article  PubMed  Google Scholar 

  • Binon PP (2000) Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 15(1):76–94

    PubMed  Google Scholar 

  • Bishti S, Strub JR, Att W (2014) Effect of the implant-abutment interface on peri-implant tissues: a systematic review. Acta Odontol Scand 72(1):13–25

    Article  PubMed  Google Scholar 

  • Brandt E, Woerly G, Younes AB, Loiseau S, Capron M (2000) IL-4 production by human polymorphonuclear neutrophils. J Leukoc Biol 68(1):125–130

    PubMed  Google Scholar 

  • Brunski JB (2000) The new millennium in biomaterials and biomechanics. Int J Oral Maxillofac Implants 15(3):327–328

    Google Scholar 

  • Bryington M, Mendonca G, Nares S, Cooper LF (2012) Osteoblastic and cytokine gene expression of implant-adherent cells in humans. Clin Oral Implants Res. 25(1):52–58

    Article  PubMed  Google Scholar 

  • Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs [see comments]. J Biomed Mater Res 25(7):889–902

    Article  PubMed  Google Scholar 

  • Cao S, Zhang X, Edwards JP, Mosser DM (2006) NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 281(36):26041–26050

    Article  PubMed  Google Scholar 

  • Cecchinato D, Lops D, Salvi GE, Sanz M (2015) A prospective, randomized, controlled study using OsseoSpeed() implants placed in maxillary fresh extraction socket: soft tissues response. Clin Oral Implants Res 26(1):20–27

    Article  PubMed  Google Scholar 

  • Chehroudi B, Ghrebi S, Murakami H, Waterfield JD, Owen G, Brunette DM (2009) Bone formation on rough, but not polished, subcutaneously implanted Ti surfaces is preceded by macrophage accumulation. J Biomed Mater Res A 93(2):724–737

    Google Scholar 

  • Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG (2007) Nanobiomaterial applications in orthopedics. J Orthop Res 25(1):11–22

    Article  PubMed  Google Scholar 

  • Cooper LF, Pin-Harry OC (2013) “Rules of Six” – diagnostic and therapeutic guidelines for single-tooth implant success. Compend Contin Educ Dent 34(2):94–98 100–101; quiz 102, 117

    PubMed  Google Scholar 

  • Cooper LF, Reside G, Stanford C, Barwacz C, Feine J, Abi Nader S, Scheyer ET, McGuire M (2015) A multicenter randomized comparative trial of implants with different abutment interfaces to replace anterior maxillary single teeth. Int J Oral Maxillofac Implants 30(3):622–632

    Article  PubMed  Google Scholar 

  • Crowther M, Brown NJ, Bishop ET, Lewis CE (2001) Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 70(4):478–490

    PubMed  Google Scholar 

  • Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11(5):391–401

    PubMed  Google Scholar 

  • Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13(8):1025–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    Article  PubMed  Google Scholar 

  • Ferrari M, Cagidiaco MC, Garcia-Godoy F, Goracci C, Cairo F (2015) Effect of different prosthetic abutments on peri-implant soft tissue. A randomized controlled clinical trial. Am J Dent 28(2):85–89

    PubMed  Google Scholar 

  • Fink J, Fuhrmann R, Scharnweber T, Franke RP (2008) Stimulation of monocytes and macrophages: possible influence of surface roughness. Clin Hemorheol Microcirc 39(1–4):205–212

    Article  PubMed  Google Scholar 

  • Fransson C, Lekholm U, Jemt T, Berglundh T (2005) Prevalence of subjects with progressive bone loss at implants. Clin Oral Implants Res 16(4):440–446

    Article  PubMed  Google Scholar 

  • Gulje F, Abrahamsson I, Chen S, Stanford C, Zadeh H, Palmer R (2012) Implants of 6 mm vs. 11 mm lengths in the posterior maxilla and mandible: a 1-year multicenter randomized controlled trial. Clin Oral Implants Res. 24(12):1325–1331

    Article  PubMed  Google Scholar 

  • Gulje F, Abrahamsson I, Chen S, Stanford C, Zadeh H, Palmer R (2013) Implants of 6 mm vs. 11 mm lengths in the posterior maxilla and mandible: a 1-year multicenter randomized controlled trial. Clin Oral Implants Res 24(12):1325–1331

    Article  PubMed  Google Scholar 

  • Halldin A, Jimbo R, Johansson CB, Wennerberg A, Jacobsson M, Albrektsson T, Hansson S (2014) Implant stability and bone remodeling after 3 and 13 days of implantation with an initial static strain. Clin Implant Dent Relat Res 16(3):383–393

    Article  PubMed  Google Scholar 

  • Hansson S (1999) The implant neck: smooth or provided with retention elements – a biomechanical approach. Clin Oral Implants Res 10(5):394–405

    Article  PubMed  Google Scholar 

  • Hansson S (2000) Surface roughness parameters as predictors of anchorage strength in bone: a critical analysis. J Biomech 33(10):1297–1303

    Article  PubMed  Google Scholar 

  • Hansson S, Halldin A (2009) Re: effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol 80(7):1033–1035 authors response 1035–1036

    Article  PubMed  Google Scholar 

  • Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M (1999) Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274(11):6972–6978

    Article  PubMed  Google Scholar 

  • Hoshi K, Komori T, Ozawa H (1999) Morphological characterization of skeletal cells in Cbfa1-deficient mice. Bone 25(6):639–651

    Article  PubMed  Google Scholar 

  • Kasemo B, Lausmaa J (1994) Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102(Suppl 5):41–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang NP, Berglundh T, Heitz-Mayfield LJ, Pjetursson BE, Salvi GE, Sanz M (2004) Consensus statements and recommended clinical procedures regarding implant survival and complications. Int J Oral Maxillofac Implants 19(Suppl):150–154

    PubMed  Google Scholar 

  • Leknes KN, Yang J, Qahash M, Polimeni G, Susin C, Wikesjo UM (2008) Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: radiographic observations. Clin Oral Implants Res 19(10):1027–1033

    Article  PubMed  Google Scholar 

  • Lewis JS, Lee JA, Underwood JC, Harris AL, Lewis CE (1999) Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 66(6):889–900

    Article  PubMed  Google Scholar 

  • Linkevicius T, Puisys A, Steigmann M, Vindasiute E, Linkeviciene L (2014) Influence of vertical soft tissue thickness on crestal bone changes around implants with platform switching: a comparative clinical study. Clin Implant Dent Relat Res. 17(6):1228–1236

    Article  PubMed  Google Scholar 

  • Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, Allison JP, Allen JE (2007) Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol 179(6):3926–3936

    Article  PubMed  Google Scholar 

  • Lops D, Bressan E, Parpaiola A, Luca S, Cecchinato D, Romeo E (2014) Soft tissues stability of cad-cam and stock abutments in anterior regions: 2-year prospective multicentric cohort study. Clin Oral Implants Res. 26(12):1436–1442

    Article  PubMed  Google Scholar 

  • Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP, Haiat G (2014) Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 47(1):3–13

    Article  PubMed  Google Scholar 

  • Meirelles L, Albrektsson T, Kjellin P, Arvidsson A, Franke-Stenport V, Andersson M, Currie F, Wennerberg A (2008a) Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model. J Biomed Mater Res A. 87(3):624–631

    Article  PubMed  Google Scholar 

  • Meirelles L, Arvidsson A, Albrektsson T, Wennerberg A (2007) Increased bone formation to unstable nano rough titanium implants. Clin Oral Implants Res 18(3):326–332

    Article  PubMed  Google Scholar 

  • Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A (2008b) Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A. 87(2):299–307

    Article  PubMed  Google Scholar 

  • Meirelles L, Melin L, Peltola T, Kjellin P, Kangasniemi I, Currie F, Andersson M, Albrektsson T, Wennerberg A (2008c) Effect of hydroxyapatite and titania nanostructures on early in vivo bone response. Clin Implant Dent Relat Res. 10(4):245–254

    PubMed  Google Scholar 

  • Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2008) Advancing dental implant surface technology – from micron- to nanotopography. Biomaterials 29(28):3822–3835

    Article  PubMed  Google Scholar 

  • Mendonca G, Mendonca DB, Simoes LG, Araujo AL, Leite ER, Duarte WR, Aragao FJ, Cooper LF (2009a) The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 30(25):4053–4062

    Article  PubMed  Google Scholar 

  • Mendonca G, Mendonca DB, Simoes LG, Araujo AL, Leite ER, Duarte WR, Cooper LF, Aragao FJ (2009b) Nanostructured alumina-coated implant surface: effect on osteoblast-related gene expression and bone-to-implant contact in vivo. Int J Oral Maxillofac Implants 24(2):205–215

    PubMed  Google Scholar 

  • Mertens C, Meyer-Baumer A, Kappel H, Hoffmann J, Steveling HG (2012) Use of 8-mm and 9-mm implants in atrophic alveolar ridges: 10-year results. Int J Oral Maxillofac Implants 27(6):1501–1508

    PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang ZP, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  PubMed  Google Scholar 

  • Norton M (2013) Primary stability versus viable constraint – a need to redefine. Int J Oral Maxillofac Implants 28(1):19–21

    PubMed  Google Scholar 

  • Norton MR (1998) Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure. Clin Oral Implants Res 9(2):91–99

    Article  PubMed  Google Scholar 

  • Okazaki T, Ebihara S, Takahashi H, Asada M, Kanda A, Sasaki H (2005) Macrophage colony-stimulating factor induces vascular endothelial growth factor production in skeletal muscle and promotes tumor angiogenesis. J Immunol 174(12):7531–7538

    Article  PubMed  Google Scholar 

  • Orsini E, Giavaresi G, Trire A, Ottani V, Salgarello S (2012) Dental implant thread pitch and its influence on the osseointegration process: an in vivo comparison study. Int J Oral Maxillofac Implants 27(2):383–392

    PubMed  Google Scholar 

  • Patil R, van Brakel R, Iyer K, Huddleston Slater J, de Putter C, Cune M (2013) A comparative study to evaluate the effect of two different abutment designs on soft tissue healing and stability of mucosal margins. Clin Oral Implants Res 24(3):336–341

    Article  PubMed  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Renvert S, Roos-Jansaker AM, Lindahl C, Renvert H, Rutger Persson G (2007) Infection at titanium implants with or without a clinical diagnosis of inflammation. Clin Oral Implants Res. 18(4):509–516

    Article  PubMed  Google Scholar 

  • Roos-Jansaker AM, Lindahl C, Renvert H, Renvert S (2006a) Nine- to fourteen-year follow-up of implant treatment. Part I: implant loss and associations to various factors. J Clin Periodontol 33(4):283–289

    Article  PubMed  Google Scholar 

  • Roos-Jansaker AM, Lindahl C, Renvert H, Renvert S (2006b) Nine- to fourteen-year follow-up of implant treatment. Part II: presence of peri-implant lesions. J Clin Periodontol 33(4):290–295

    Article  PubMed  Google Scholar 

  • Roos-Jansaker AM, Renvert H, Lindahl C, Renvert S (2006c) Nine- to fourteen-year follow-up of implant treatment. Part III: factors associated with peri-implant lesions. J Clin Periodontol 33(4):296–301

    Article  PubMed  Google Scholar 

  • Roos J, Sennerby L, Albrektsson T (1997) An update on the clinical documentation on currently used bone anchored endosseous oral implants. Dent Updat 24(5):194–200

    Google Scholar 

  • Sanchez AR, Sheridan PJ, Kupp LI (2003) Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants 18(1):93–103

    PubMed  Google Scholar 

  • Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ (2007) Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A 84(1):265–272

    Article  Google Scholar 

  • Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85(6):496–500

    Article  PubMed  Google Scholar 

  • Sims NA, Gooi JH (2008) Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19(5):444–451

    Article  PubMed  Google Scholar 

  • Slaets E, Naert I, Carmeliet G, Duyck J (2009) Early cortical bone healing around loaded titanium implants: a histological study in the rabbit. Clin Oral Implants Res 20(2):126–134

    Article  PubMed  Google Scholar 

  • Smith DE, Zarb GA (1989) Criteria for success of osseointegrated endosseous implants. J Prosthet Dent 62(5):567–572

    Article  PubMed  Google Scholar 

  • Stanford C, Schneider G, Masaki C, Zaharias R, Seabold D, Eckdhal J, Di Paola J (2006) Effects of fluoride-modified titanium dioxide grit blasted implant surfaces on platelet activation and osteoblast differentiation. Appl Osseointegration Res 5:24–30

    Google Scholar 

  • Stanford CM (1999) Biomechanical and functional behavior of implants. Adv Dent Res 13:88–92

    Article  PubMed  Google Scholar 

  • Stanford CM (2010) Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation. Int J Mol Sci 11(1):354–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanford CM, Brand RA (1999) Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J Prosthet Dent 81(5):553–561

    Article  PubMed  Google Scholar 

  • Tan KS, Qian L, Rosado R, Flood PM, Cooper LF (2006) The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production. Biomaterials 27(30):5170–5177

    Article  PubMed  Google Scholar 

  • Thalji G, Cooper LF (2013) Molecular assessment of osseointegration in vivo: a review of the current literature. Int J Oral Maxillofac Implants 28(6):e521–e534

    Article  PubMed  Google Scholar 

  • Thalji G, Cooper LF (2014) Molecular assessment of osseointegration in vitro: a review of current literature. Int J Oral Maxillofac Implants 29(2):e171–e199

    Article  PubMed  Google Scholar 

  • Thalji GN, Nares S, Cooper LF (2013) Early molecular assessment of osseointegration in humans. Clin Oral Implants Res. 25(11):1273–1285

    Article  PubMed  Google Scholar 

  • Thor A, Rasmusson L, Wennerberg A, Thomsen P, Hirsch JM, Nilsson B, Hong J (2007) The role of whole blood in thrombin generation in contact with various titanium surfaces. Biomaterials 28(6):966–974

    Article  PubMed  Google Scholar 

  • Valencia S, Gretzer C, Cooper LF (2009) Surface nanofeature effects on titanium-adherent human mesenchymal stem cells. Int J Oral Maxillofac Implants 24(1):38–46

    PubMed  Google Scholar 

  • Veis AA, Papadimitriou S, Trisi P, Tsirlis AT, Parissis NA, Kenealy JN (2007) Osseointegration of Osseotite and machined-surfaced titanium implants in membrane-covered critical-sized defects: a histologic and histometric study in dogs. Clin Oral Implants Res 18(2):153–160

    Article  PubMed  Google Scholar 

  • Wang YC, Kan JY, Rungcharassaeng K, Roe P, Lozada JL (2015) Marginal bone response of implants with platform switching and non-platform switching abutments in posterior healed sites: a 1-year prospective study. Clin Oral Implants Res 26(2):220–227

    Article  PubMed  Google Scholar 

  • Webster TJ, Ahn ES (2007) Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol 103:275–308

    PubMed  Google Scholar 

  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51(3):475–483

    Article  PubMed  Google Scholar 

  • Webster TJ, Siegel RW, Bizios R (1999) Design and evaluation of nanophase alumina for orthopaedic/dental applications. Nanostruct Mater 12(5–8):983–986

    Article  Google Scholar 

  • Wennerberg A, Albrektsson T (2000) Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 15(3):331–344

    PubMed  Google Scholar 

  • Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B (1997) A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillofac Implants 12(4):486–494

    PubMed  Google Scholar 

  • Wennstrom JL, Derks J (2012) Is there a need for keratinized mucosa around implants to maintain health and tissue stability? Clin Oral Implants Res 23(Suppl 6):136–146

    Article  PubMed  Google Scholar 

  • Widmark G, Andersson B, Carlsson GE, Lindvall AM, Ivanoff CJ (2001) Rehabilitation of patients with severely resorbed maxillae by means of implants with or without bone grafts: a 3-to 5-year follow-up clinical report. Int J Oral Maxillofac Implants 16(1):73–79

    PubMed  Google Scholar 

  • Wikesjo UM, Qahash M, Polimeni G, Susin C, Shanaman RH, Rohrer MD, Wozney JM, Hall J (2008) Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: histologic observations. J Clin Periodontol 35(11):1001–1010

    Article  PubMed  Google Scholar 

  • Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT (1998) Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem 273(49):32988–32994

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark M. Stanford DDS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stanford, C.M. (2017). Osseointegration and the Biology of Peri-implant Hard and Soft Tissues. In: Karateew, E. (eds) Implant Aesthetics. Springer, Cham. https://doi.org/10.1007/978-3-319-50706-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50706-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50704-0

  • Online ISBN: 978-3-319-50706-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics