Skip to main content

Resurrected Ancestral Proteins as Scaffolds for Protein Engineering

  • Chapter
  • First Online:
Directed Enzyme Evolution: Advances and Applications

Abstract

High stability and enhanced promiscuity (likely linked to conformational flexibility/diversity) contribute to evolvability and are advantageous features in protein scaffolds for laboratory-directed evolution and molecular design. Furthermore, the two features are not necessarily incompatible, and proteins may simultaneously be promiscuous/flexible and highly stable. In fact, it appears plausible that the combination of the two features was not uncommon among the most ancient proteins because (i) ancient life was likely thermophilic and (ii) ancient proteins were likely promiscuous generalists with broad functionalities. Phylogenetic analyses allow the reconstruction of ancestral sequences and provide an approach to explore the properties of ancient proteins. High stability and promiscuity have been often found for proteins encoded by reconstructed ancestral sequences, i.e., for “resurrected” ancestral proteins. The combination of the two features, i.e., the ancestral hyperstable generalist phenotype, has actually been obtained in recent studies. Ancestral protein resurrection thus emerges as a useful source of scaffolds for protein engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharoni A, Gaidukov L, Khersonsky O et al (2005) The ‘evolvability’ of promiscuous protein functions. Nat Genet 37(1):73–76

    CAS  PubMed  Google Scholar 

  2. Akanuma S, Nakajima Y, Yokobori S et al (2013) Experimental evidence for the thermophilicity of ancestral life. Proc Natl Acad Sci U S A 110:11067–11072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amin N, Liu AD, Ramer S et al (2004) Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng Des Sel 17:787–793

    Article  CAS  PubMed  Google Scholar 

  4. Anderson DW, McKeown AN, Thornton JW (2015) Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. Elife 4:e07864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Anderson DP, Whitney DS, Hanson-Smith V et al (2016) Evolution of an ancient protein function involved in organized multicellularity in animals. Elife 5:e10147

    PubMed  PubMed Central  Google Scholar 

  6. Atkinson QD (2013) The descent of words. Proc Natl Acad Sci U S A 110(11):4159–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Babtie A, Tokuriki N, Hollfelder F (2010) What makes an enzyme promiscuous? Curr Opin Chem Biol 14:200–207

    Article  CAS  PubMed  Google Scholar 

  8. Bahar I, Lezon TR, Yang LW et al (2010) Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39:23–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baier F, Tokuriki N (2014) Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily. J Mol Biol 426:2442–2456

    Article  CAS  PubMed  Google Scholar 

  10. Bar-Even A, Noor E, Savir Y et al (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410

    Article  CAS  PubMed  Google Scholar 

  11. Bar-Rogovsky H, Hugenmatter A, Tawfik DS (2013) The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J Biol Chem 288(33):23914–23927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ben-David M, Elias M, Filippi JJ et al (2012) Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1. J Mol Biol 418:181–196

    Article  CAS  PubMed  Google Scholar 

  13. Benner SA, Sassi SO, Gaucher EA (2007) Molecular paleoscience: systems biology from the past. Adv Enzymol Relat Areas Mol Biol 75:1–132

    CAS  PubMed  Google Scholar 

  14. Bergthorsson U, Andersson DI, Roth JR (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci U S A 104(43):17004–17009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bershtein S, Segal M, Bekerman R et al (2006) Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444:929–932

    Article  CAS  PubMed  Google Scholar 

  16. Bickelmann C, Morrow JM, Du J et al (2015) The molecular origin and evolution of dim-light vision in mammals. Evolution 69(11):2995–3003

    Article  CAS  PubMed  Google Scholar 

  17. Bloom JD, Labthavikul ST, Otey CR et al (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103:5869–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bloom JD, Arnold FH, Wilke CO (2007) Breaking proteins with mutations: threads and thresholds in evolution. Mol Syst Biol 3:76

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bornscheuer UT, Kazlauskas RJ (2004) Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed 43:6032–6040

    Article  CAS  Google Scholar 

  21. Bouchard-Côte A, Hall D, Griffiths TL et al (2013) Automated reconstruction of ancient languages using probabilistic models of sound change. Proc Natl Acad Sci U S A 110:4224–4229

    Article  PubMed  PubMed Central  Google Scholar 

  22. Butterwick JA, Loria JP, Astrof NS et al (2004) Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes. J Mol Biol 339(4):855–871

    Article  CAS  PubMed  Google Scholar 

  23. Carrigan MA, Uryasev O, Frye CB et al (2015) Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc Natl Acad Sci U S A 112(2):458–463

    Article  CAS  PubMed  Google Scholar 

  24. Changeux JP, Edelstein A (2011) Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep 3:19

    Google Scholar 

  25. Chao FA, Morelli A, Haugner JC 3rd et al (2013) Structure and dynamics of a primordial catalytic fold generated by in vitro evolution. Nat Chem Biol 9(2):81–83

    Article  CAS  PubMed  Google Scholar 

  26. Clifton BE, Jackson CJ (2016) Ancestral protein reconstruction yields insight into adaptive evolution of binding specifity in solute-binding proteins. Cell Chem Biol 23:236–245

    Article  CAS  PubMed  Google Scholar 

  27. Cole MF, Gaucher EA (2011) Utilizing natural diversity to evolve protein function: applications towards thermostability. Curr Opin Chem Biol 15(3):399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7:265–272

    Article  CAS  PubMed  Google Scholar 

  29. Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765

    CAS  PubMed  Google Scholar 

  30. Devamani T, Rauwerdink AM, Lunzer M et al (2016) Catalytic promiscuity of ancestral esterases and hydroxynitrile lyases. J Am Chem Soc 138(3):1046–1056

    Article  CAS  PubMed  Google Scholar 

  31. Diaz JE, Lin CS, Kunishiro K et al (2011) Computational design and selections for an engineered, thermostable terpene synthase. Protein Sci 9:1597–1606

    Article  CAS  Google Scholar 

  32. Duarte F, Amrein BA, Kamerlin SC (2013) Modeling catalytic promiscuity in the alkaline phosphatase superfamily. Phys Chem Chem Phys 15(27):11160–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Due AV, Kuper J, Geerlof A et al (2011) Bisubstrate specificity in histidine/tryptophan biosynthesis isomerase from Mycobacterium tuberculosis by active site metamorphosis. Proc Natl Acad Sci U S A 108(9):3554–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Durani V, Magliery TJ (2013) Protein engineering and stabilization from sequence statistics: variation and covariation analysis. Methods Enzymol 523:237–256

    Article  CAS  PubMed  Google Scholar 

  35. Erijman A, Aizner Y, Shifman JM (2011) Multispecific recognition: mechanism, evolution, and design. Biochemistry 50:602–611

    Article  CAS  PubMed  Google Scholar 

  36. Finnigan GC, Hanson-Smith V, Stevens TH et al (2012) Evolution of increased complexity in a molecular machine. Nature 481:360–364

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fisher MA, McKinley KL, Bradley LH et al (2011) De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth. PLoS ONE 6(1):e15364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fitter J, Heberle J (2000) Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase. Biophys J 79(3):1629–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Force A, Lynch M, Pickett FB et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Francino MP (2005) An adaptive radiation model for the origin of new gene functions. Nat Genet 37:573–577

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Seisdedos H, Ibarra-Molero B, Sanchez-Ruiz JM (2012) How many ionizable groups can sit on a protein hydrophobic core? Proteins 80:1–7

    Article  CAS  PubMed  Google Scholar 

  42. Gaucher EA, Govindarajan S, Ganesh OK (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451:704–707

    Article  CAS  PubMed  Google Scholar 

  43. Gerek ZN, Keskin O, Ozkan SB (2009) Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior. Proteins 77:796–781

    Article  CAS  PubMed  Google Scholar 

  44. Gerek ZN, Ozkan SB (2010) A flexible docking scheme to explore the binding selectivity of PDZ domains. Protein Sci 19:914–928

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Giver L, Gershenson A, Freskgard PO et al (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95:12809–12813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Godoy-Ruiz R, Perez-Jimenez R, Ibarra-Molero B et al (2004) Relation between protein stability, evolution and structure, as probed by carboxylic acid mutations. J Mol Biol 336:313–318

    Article  CAS  PubMed  Google Scholar 

  47. Godoy-Ruiz R, Ariza F, Rodriguez-Larrea D et al (2006) Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments. J Mol Biol 362:966–997

    Article  CAS  PubMed  Google Scholar 

  48. Grunwald P (2009) Use of enzymes in industry. In: Biocatalysis: biochemical fundamentals and applications. Imperial College Press, London, pp 968–992

    Chapter  Google Scholar 

  49. Guindon S, Lethiec F, Duroux P et al (2005) PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Herpetol 100(5):605–617

    CAS  Google Scholar 

  51. Hall BG, Barlow M (2004) Evolution of the serine beta-lactamases: past, present and future. Drug Resist Updat 7(2):111–123

    Article  CAS  PubMed  Google Scholar 

  52. Harms MJ, Thornton JW (2010) Analyzing protein structure and function using ancestral gene resurrection. Curr Opin Struct Biol 20:260–236

    Article  CAS  Google Scholar 

  53. Harms MJ, Thornton JW (2013) Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet 14:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hart KM, Harms MJ, Schmidt BH et al (2014) Thermodynamic system drift in protein evolution. PLoS Biol 12(11):e1001994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hernandez G, Jenney FE Jr, Adams MW et al (2000) Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Proc Natl Acad Sci U S A 97(7):3166–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    Article  CAS  PubMed  Google Scholar 

  57. Hobbs JK, Shepherd C, Saul DJ et al (2012) On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Mol Biol Evol 29:825–835

    Article  CAS  PubMed  Google Scholar 

  58. Hou L, Honaker MT, Shireman LM et al (2007) Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem 282(32):23264–23274

    Article  CAS  PubMed  Google Scholar 

  59. Huang R, Hippauf F, Rohrbeck D et al (2012) Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc Natl Acad Sci USA 109(8):2966–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hudson WH, Kossmann BR, de Vera IM et al (2016) Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc Natl Acad Sci U S A 113(2):326–331

    Article  CAS  PubMed  Google Scholar 

  61. Hughes AL (2005) Gene duplication and the origin of novel proteins. Proc Natl Acad Sci U S A 102:8791–8792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25(5):231–238

    Article  CAS  PubMed  Google Scholar 

  63. Ibarra-Molero B, Loladze VV, Makhatadze GI et al (1999) Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Biochemistry 38(25):8138–8149

    Article  CAS  PubMed  Google Scholar 

  64. Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado A et al (2013) Conservation of protein structure over four billion years. Structure 21:1690–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11(2):97–108

    CAS  PubMed  Google Scholar 

  66. Jaenicke R (2000) Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc Natl Acad Sci U S A 97:2962–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. James LC, Tawfik DS (2003) Conformational diversity and protein evolution -a sixty-years-old hypothesis revisited. Trends Biochem Sci 28:361–368

    Article  CAS  PubMed  Google Scholar 

  68. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    Article  CAS  PubMed  Google Scholar 

  69. Jermann TM, Opotz JG, Stackhouse J et al (1995) Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374:57–59

    Article  CAS  PubMed  Google Scholar 

  70. Kalimeri M, Rahaman O, Melchionna S et al (2013) How conformational flexibility stabilizes the hyperthermophilic elongation factor g-domain. J Phys Chem B 117:13775–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kar G, Keskin O, Gursoy A et al (2010) Allostery and population shift in drug discovery. Curr Opin Pharmacol 10:715–722

    Article  CAS  PubMed  Google Scholar 

  72. Kasting JF (1987) Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34:205–229

    Article  CAS  PubMed  Google Scholar 

  73. Kasting JF (2013) Atmospheric science. How was early Earth kept warm? Science 339(6115):44–45

    Article  PubMed  Google Scholar 

  74. Kazlauskas RJ (2005) Enhancing catalytic promiscuity for biocatalysis. Curr Opin Chem Biol 2:195–201

    Article  CAS  Google Scholar 

  75. Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508

    Article  CAS  PubMed  Google Scholar 

  76. Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    Article  CAS  PubMed  Google Scholar 

  77. Khersonsky O, Kiss G, Röthlisberger D et al (2012) Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc Natl Acad Sci U S A 109(26):10358–10363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim J, Copley SD (2007) Why metabolic enzymes are essential or nonessential for growth of Escherichia coli K12 on glucose. Biochemistry 46:12501–12511

    Article  CAS  PubMed  Google Scholar 

  79. Knauth LP, Lowe DR (1978) Oxygen Isotope Geochemistry of Cherts from Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in isotopic composition of cherts. Earth Planet Sci Lett 41:209–222

    Article  CAS  Google Scholar 

  80. Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580

    Article  CAS  Google Scholar 

  81. Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69

    Article  Google Scholar 

  82. Kohn A, Binz HK, Forrer P et al (2003) Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci U S A 100:1700–1705

    Article  CAS  Google Scholar 

  83. Korendovych IV, Kulp DW, Wu Y et al (2011) Design of a switchable eliminase. Proc Natl Acad Sci U S A 108:6823–6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Korendovych IV, DeGrado WF (2014) Catalytic efficiency of designed catalytic proteins. Curr Opin Struct Biol 27:113–121

    Article  CAS  PubMed  Google Scholar 

  85. Kratzer JT, Lanaspa MA, Murphy MN et al (2014) Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci U S A 111(10):3763–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lane N, Martin WF (2012) The origin of membrane energetics. Cell 151:1406–1416

    Article  CAS  PubMed  Google Scholar 

  87. Lange OF, Lakomek NA, Farès C et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320(5882):1471–1475

    Article  PubMed  CAS  Google Scholar 

  88. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288

    Article  CAS  PubMed  Google Scholar 

  89. Lehman M, Pasamontes L, Lassen SF et al (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta 1543:408–415

    Article  Google Scholar 

  90. Li Y, Drummond DA, Sawayama AM et al (2007) A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 25(9):1051–1056

    Article  CAS  PubMed  Google Scholar 

  91. Liberles D (2007) Ancestral sequence reconstruction. Oxford University Press, USA

    Book  Google Scholar 

  92. Magliery TJ (2015) Protein stability: computation, sequence statistics, and new experimental methods. Curr Opin Struct Biol 33:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin W, Baross J, Kelley D et al (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6(11):805–814

    CAS  PubMed  Google Scholar 

  94. Merkl R, Sterner R (2016) Ancestral protein reconstruction: techniques and applications. Biol Chem 397(1):1–21

    Article  CAS  PubMed  Google Scholar 

  95. Merski M, Shoichet BK (2012) Engineering a model protein cavity to catalyze the Kemp elimination. Proc Natl Acad Sci U S A 109:16179–16183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miyazaki K, Wintrode PL, Grayling RA et al (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297(4):1015–1026

    Article  CAS  PubMed  Google Scholar 

  97. Moroz YS, Dunston TT, Makhlynets OV et al (2015) New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J Am Chem Soc 137(47):14905–14911

    Article  CAS  PubMed  Google Scholar 

  98. Münz M, Hein J, Biggin PC (2012) The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput Biol 8:e1002749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Murphy GS, Greisman JB, Hecht MH (2016) De novo proteins with life-sustaining functions are structurally dynamic. J Mol Biol 428(2 Pt A):399–411

    Article  CAS  PubMed  Google Scholar 

  100. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409(6823):1083–1091

    Article  CAS  PubMed  Google Scholar 

  101. Novak MJ, Pattammattel A, Koshmerl B et al (2016) “Stable-on-the-Table” enzymes: engineering the enzyme–graphene oxide interface for unprecedented kinetic stability of the biocatalyst. ACS Catal 6(1):339–347

    Article  CAS  Google Scholar 

  102. Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27:157–167

    Article  CAS  PubMed  Google Scholar 

  103. Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Book  Google Scholar 

  104. O’Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6:R91–R105

    Article  PubMed  Google Scholar 

  105. Ortlund EA, Bridgham JT, Redimbo MR et al (2007) Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317:1544–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pauling L, Zuckerkandl E (1963) Chemical paleogenetics. Molecular ‘restoration studies’ of extinct forms of life. Acta Chem Scand 17:S9–S16

    Article  CAS  Google Scholar 

  107. Perez-Jimenez R, Ingles-Prieto A, Zhao ZM et al (2011) Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol 18:592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Plach MG, Reisinger B, Sterner R et al (2016) Long-term persistence of bi-functionality contributes to the robustness of microbial life through exaptation. PLoS Genet 12(1):e1005836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Risso VA, Gavira JA, Mejia-Carmona DF et al (2013) Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian b-lactamases. J Am Chem Soc 135:2899–2902

    Article  CAS  PubMed  Google Scholar 

  110. Risso VA, Gavira JA, Gaucher EA et al (2014) Phenotypic comparisons of consensus variants versus laboratory resurrections of Precambrian proteins. Proteins 82(6):887–896

    Article  CAS  PubMed  Google Scholar 

  111. Risso VA, Manssour-Triedo F, Delgado-Delgado A et al (2015) Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history. Mol Biol Evol 32(2):440–455

    Article  PubMed  Google Scholar 

  112. Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972

    Article  CAS  PubMed  Google Scholar 

  113. Robertson AD, Murphy KP (1997) Protein structure and the energetics of protein stability. Chem Rev 97(5):1251–1268

    Article  CAS  PubMed  Google Scholar 

  114. Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  116. Sanchez-Ruiz JM (2010) Protein kinetic stability. Biophys Chem 148(1–3):1–15

    Article  CAS  PubMed  Google Scholar 

  117. Schellman JA (1987) The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem 16:115–137

    Article  CAS  PubMed  Google Scholar 

  118. Schulenburg C, Miller BG (2014) Enzyme recruitment and its role in metabolic expansion. Biochemistry 53(5):836–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seelig B, Szostak JW (2007) Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448(7155):828–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sikosek T, Chan HS (2014) Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 11:20140419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Sleep NH (2010) The Hadean-Archaean environment. Cold Spring Harb Perspect Biol 2:a002527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Smock RG, Yadid I, Dym O et al (2016) De novo evolutionary emergence of a symmetrical protein is shaped by folding constraints. Cell 164(3):476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Som SM, Catling DC, Harnmeijer JP et al (2012) Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484(7394):359–362

    Article  CAS  PubMed  Google Scholar 

  124. Steipe B, Schiller B, Pluckthun A et al (1994) Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 240:188–192

    Article  CAS  PubMed  Google Scholar 

  125. Stockbridge RB, Lewis CA Jr, Yuan Y et al (2010) Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proc Natl Acad Sci U S A 107(51):22102–22105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Taverna DR, Goldstein RA (2002) Why are proteins marginally stable? Proteins 46:105–109

    Article  CAS  PubMed  Google Scholar 

  127. Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5:366–375

    Article  CAS  PubMed  Google Scholar 

  128. Tobi D, Bahar I (2005) Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc Natl Acad Sci U S A 102:18908–18913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Van den Burg B, Vriend G, Veltman OR et al (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci U S A 95(5):2056–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Voordeckers K, Brown CA, Vanneste K et al (2012) Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol 10:e1001446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vogt AD, Di Cera E (2012) Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51:5894–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Williams PD, Pollock DD, Blackburne BP et al (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2(6):e69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Wijma HJ, Floor RJ, Janssen DB (2013) Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol 23(4):588–594

    Article  CAS  PubMed  Google Scholar 

  134. Whitfield JH, Zhang W, Herde MK et al (2015) Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction. Protein Sci 24:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wolfenden R (2006) Degrees of difficulty of water-consuming reactions in the absence of enzymes. Chem Rev 106:3379–3396

    Article  CAS  PubMed  Google Scholar 

  137. Wolfenden R (2011) Benchmark reaction rates, the stability of biological molecules in water, and the evolution of the catalytic power in enzymes. Annu Rev Biochem 80:645–647

    Article  CAS  PubMed  Google Scholar 

  138. Wolfenden R (2014a) Massive thermal acceleration of the emergence of primordial chemistry, the incidence of spontaneous mutation, and the evolution of enzymes. J Biol Chem 289(44):30198–30204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wolfenden R (2014b) Primordial chemistry and enzyme evolution in a hot environment. Cell Mol Life Sci 71(15):2909–2915

    Google Scholar 

  140. Wordsworth R, Pierrehumbert R (2013) Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339(6115):64–67

    Article  CAS  PubMed  Google Scholar 

  141. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  142. Yip SH, Matsumura I (2013) Substrate ambiguous enzymes within the Escherichia coli proteome offer different evolutionary solutions to the same problem. Mol Biol Evol 30(9):2001–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamniuk AP, Vogel HJ (2004) Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol 27(1):33–57

    Article  CAS  PubMed  Google Scholar 

  144. Zhang W, Dourado DF, Fernandes PA et al (2012) Multidimensional epistasis and fitness landscapes in enzyme evolution. Biochem J 445(1):39–46

    Article  CAS  PubMed  Google Scholar 

  145. Zou T, Risso VA, Gavira JA et al (2015) Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme. Mol Biol Evol 32:142–143

    Google Scholar 

Download references

Acknowledgments

Work in the authors’ lab is supported by FEDER Funds and Grants, CSD2009-00088, and BIO2015-66426-R from the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Risso, V.A., Sanchez-Ruiz, J.M. (2017). Resurrected Ancestral Proteins as Scaffolds for Protein Engineering. In: Alcalde, M. (eds) Directed Enzyme Evolution: Advances and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-50413-1_9

Download citation

Publish with us

Policies and ethics