Skip to main content

Progenitor Skin Cell Therapy and Evolution of Medical Applications

  • Chapter
  • First Online:

Abstract

Organs and cells can be efficiently used and transformed into intermediate or final products that propose many advances in new medical technology from skin grafting to 3D micro-tissues for biocompatibility and industry testing. For instance, cell sources that can be easily expanded and stocked from allogeneic sources would be interesting in order to avoid the biopsy from the patient and the time necessary to prepare the cells before treatments of patients. Also, cell sources used historically in medicine can provide enough banked cells not only designated for treatment of patients but also for developing innovative testing platforms with uniform primary cell populations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFIRM:

Armed Forces Institute of Regenerative Medicine

BM-MSC:

Bone marrow mesenchymal stem cell

DOD:

Department of Defense

GMP:

Good manufacturing Practice

GvHD:

Graft versus host disease

MCB:

Master cell bank

WCB:

Working cell bank

References

  1. Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952;12:264–5.

    Google Scholar 

  2. Banatvala JE, Brown DWG. Rubella. Lancet. 2004;363:1127–37.

    Article  CAS  PubMed  Google Scholar 

  3. Jacobs JP, Jones CM, Baille JP. Characteristics of a human diploid cell designated MRC-5. Nature. 1970;227:168–70.

    Article  CAS  PubMed  Google Scholar 

  4. Palache AM, Brands R, van Scharrenburg GJ. Immunogenicity and reactogenicity of influenza subunit vaccines produced in MCDH cells or fertilized chicken eggs. J Infect Dis. 1997;176:520–3.

    Article  Google Scholar 

  5. Zimmerman RK. Ethical analyses of vaccines grown in human cell strains derived from abortion: arguments and internet search. Vaccine. 2004;22:4238–44.

    Article  PubMed  Google Scholar 

  6. Cavallo C, Cuomo C, Fantini S, Ricci F, Tazzari PL, Lucarelli E, Donati D, Facchini A, Lisignoli G, Fornasari PM, Grigolo B, Moroni L. Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. J Cell Biochem. 2011;112:1418–30.

    Article  CAS  PubMed  Google Scholar 

  7. Moroni L, Fornasari PM. Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues. J Cell Physiol. 2012;228:680–7.

    Article  CAS  Google Scholar 

  8. Tannenbaum SE, Turetsky TT, Singer O, Aizenman E, Kirshberg S, Ilouz N, Gil Y, Berman-Zaken Y, Perlman TS, Geva N, Levy O, Arbell D, Simon A, Ben-Meir A, Shufaro Y, Laufer N, Reubinoff BE. Derivations of xeno-free and GMP-grade human embryonic stem cells- platforms for future clinical applications. PLoS One. 2012;7(6):ee35325.

    Article  CAS  Google Scholar 

  9. Van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G. Optimization of chemicall defined cell culture media-replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro. 2010;24:1053–63.

    Article  CAS  PubMed  Google Scholar 

  10. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes, the formation of keratinizing colonies from single cells. Cell. 1975;6:331–44.

    Article  CAS  PubMed  Google Scholar 

  11. de Buys Roessingh AS, Hohlfeld J, Scaletta C, Hirt-Burri N, Gerber S, et al. Development, characterization and use of a fetal skin cell bank for tissue engineering in wound healing. Cell Transplant. 2006;15:823–34.

    Article  PubMed  Google Scholar 

  12. Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, Chaubert P, Gerber S, et al. Tissue-engineered fetal skin constructs for paediatric burns. Lancet. 2005;366:840–2.

    Article  PubMed  Google Scholar 

  13. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.

    Article  CAS  PubMed  Google Scholar 

  14. Quintin A, Hirt-Burri N, Scaletta C, Schizas C, Pioletti DP, Applegate LA. Consistency and safety of fetal cell banks for research and clinical use. Cell Transplant. 2007;16:675–84.

    Article  PubMed  Google Scholar 

  15. Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009;15:804–11.

    Article  CAS  PubMed  Google Scholar 

  16. Mack GS. Osiris seals billion-dollar deal with Genzyme for cell therapy. Nat Biotechnol. 2009;27:106–7.

    Article  CAS  PubMed  Google Scholar 

  17. Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets. 2009;8:110–23.

    Article  CAS  PubMed  Google Scholar 

  18. Allison M. Genzyme backs Osiris, despite Prachymal flop. Nat Biotechnol. 2009;27:966–77.

    Article  CAS  PubMed  Google Scholar 

  19. Applegate LA, Hirt-Burri N, Scaletta C, Bauen J-F, Piolotti DP. Bioengineering of human fetal tissues for clinical use. In: Bioengineering: principles, methodologies and applications, Chapter 4. Hauppauge, NY: Nova Sciences Publishers; 2009. p. 1–19. isbn:978-1-60741-7620.

    Google Scholar 

  20. Applegate LA, Scaletta C, Hirt-Burri N, Raffoul W, Pioletti DP. Whole-cell bioprocessing of human fetal cells for tissue engineering of skin. Skin Pharmacol Physiol. 2009;22:63–73.

    Article  CAS  PubMed  Google Scholar 

  21. Applegate LA, Weber D, Simon J-P, Scaletta C, Hirt-Burri N, et al. Organ donation and whole-cell bioprocessing in the Swiss fetal progenitor cell transplantation platform. In: Organ donation and organ donors: issues, challenges and perspectives. Hauppauge, NY: Nova Publications; 2013.

    Google Scholar 

  22. Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, et al. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darwiche S, Scaletta C, Raffoul W, Pioletti DP, Applegate LA. Epiphyseal chondroprogenitors provide a stable cell source for cartilage cell therapy. Cell Med. 2012;4:23–32.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hirt-Burri N, de Buys Roessingh AS, Scaletta C, Gerber S, Pioletti DP, et al. Human muscular fetal cells: a potential cell source for muscular therapies. Pediatr Surg Int. 2008;24:37–47.

    Article  PubMed  Google Scholar 

  25. Hirt-Burri N, Scaletta C, Gerber S, Pioletti DP, Applegate LA. Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artif Organs. 2008;32:509–18.

    Article  PubMed  Google Scholar 

  26. Hirt-Burri N, Ramelet A-A, Raffoul W, de Buys RA, Scaletta C, et al. Biologicals and fetal cell therapy for wound and scar management. ISRN Dermatol. 2011;2011:549870. doi:10.5402/2011/549870.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krattinger N, Applegate LA, Pioletti DP, Caverzasio J. Regulation of proliferation and differentiatioon of human fetal bone cells. Eur Cell Mater. 2011;21:46–58.

    Article  CAS  PubMed  Google Scholar 

  28. Montjovent MO, Burri N, Mark S, Federici E, Scaletta C, et al. Fetal bone cells for tissue engineering. Bone. 2004;35:1323–33.

    Article  CAS  PubMed  Google Scholar 

  29. Montjovent M-O, Mathieu L, Schmoekel H, Silke M, Bourban P-E, et al. Repair of critical size defects in the rat cranium using ceramic-reinforced PLA scaffolds obtained by supercritical gas foaming. J Biomed Mater Res. 2007;83A:41–51.

    Article  CAS  Google Scholar 

  30. Montjovent M-O, Silke M, Mathieu L, Scaletta C, Scherberich A, et al. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone. 2008;42:554–64.

    Article  CAS  PubMed  Google Scholar 

  31. Pioletti DP, Montjovent MO, Zambelli P-Y, Applegate LA. Bone tissue engineering using foetal cell therapy. Swiss Med Wkly. 2006;136:557–60.

    PubMed  Google Scholar 

  32. Quintin A, Schizas C, Scaletta C, Jaccoud S, Applegate LA, Pioletti DP. Plasticity of fetal cartilaginous cells. Cell Transplant. 2010;19:1346–57.

    Article  Google Scholar 

  33. Tenorio DMH, Scaletta C, Jaccoud S, Hirt-Burri N, Pioletti DP, et al. Fetal bone cells in delivery systems for bone engineering. J Tissue Eng Regen Med. 2011;5:806–14.

    Article  CAS  PubMed  Google Scholar 

  34. Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer. 2010;127:1–8.

    Article  CAS  PubMed  Google Scholar 

  35. Torsvik A, Røsland GV, Svendsen A, Molven A, Immervoll H, et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track. Cancer Res. 2010;70:6393–6.

    Article  CAS  PubMed  Google Scholar 

  36. Mosna F, Sensebé L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 2010;19:1449–70.

    Article  CAS  PubMed  Google Scholar 

  37. Bhattacharya N. Fetal cell/tissue therapy in adult disease: a new horizon in regenerative medicine. Clin Exp Obstet Gynecol. 2004;31:167–73.

    PubMed  CAS  Google Scholar 

  38. Montjovent MO, Bocelli-Tyndal C, Scaletta C, Scherberich A, Martin I, et al. In vitro characterization of immune-related properties of human fetal bone cells for potential tissue engineering applications. Tissue Eng Part A. 2009;15:1523–32.

    Article  CAS  PubMed  Google Scholar 

  39. Oster H, Wilson DI, Hanley NA. Human embryo and early fetus research. Clin Genet. 2006;70:98–107.

    Article  Google Scholar 

  40. Quintin A, Schizas C, Scaletta C, Jaccoud S, Chapuis-Bernasconi C, et al. Human fetal spine as a source of cells for intervertebral disc regeneration. J Mol Cell Med. 2009;13:1–12.

    Article  Google Scholar 

  41. Ramelet A-A, Hirt-Burri N, Raffoul W, Scaletta C, Pioletti DP, et al. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp. Gerontology. 2008;44:208–18.

    Google Scholar 

  42. Ng KW, Khor HL, Hutmacher DW. In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials. 2004;25:2807–18.

    Article  CAS  PubMed  Google Scholar 

  43. Borcard F, Godinat A, Staedler D, Comas Blanco H, Dumont A-L, et al. Covalent cell surface functionalization of human fetal osteoblasts for tissue engineering. Bioconjug Chem. 2011;22:1422–32.

    Article  CAS  PubMed  Google Scholar 

  44. Krauss JF, Borcard F, Staedler D, Scaletta C, Applegate LA, et al. Functionalization of microstructured open-porous bioceramic scaffolds with human fetal bone cells. Bioconjug Chem. 2012;23:2278–90.

    Article  CAS  Google Scholar 

  45. Addor V, Narring F, Michaud P-A. Abortion trends 1990–1999 in a Swiss region and determinants of abortion recurrence. Swiss Med Wkly. 2003;133:219–26.

    PubMed  CAS  Google Scholar 

  46. Wyss D, Wirthner D, Renteria SC, De Grandi P. Les demandes d’interruption de grossesse de 1988 à 2002 au CHUV. Rev Med Suisse. 2004;2503:1–8.

    Google Scholar 

  47. Yanow S. It is time to integrate abortion into primary care. Am J Public Health. 2013;103:14–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. EU. Setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. In: Parliament E, editor. Directive 2004/23/EC; 2004.

    Google Scholar 

  49. EU. Implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells. In: Parliament E, editor. Directive 2006/17/EC, 2006.

    Google Scholar 

  50. EU. Implementing Directive 2004/23/EC of the European Parliament and of the Council as regards traceability requirements, notification of serious adverse reactions and events and certain technical requirements for the coding, processing, preservation, storage and distribution of human tissues and cells. In: Parliament E, editor. Directive 2006/86/EC, 2006.

    Google Scholar 

  51. PMP/ICH. Note for guidance on quality of biotechnological products: derivation and characterisation of cell substrates used for production of biotechnological/biological products. CPMP/ICH/294/95, 2001.

    Google Scholar 

  52. SwissMedics, Swiss Federal Council Transplantation Law, TxL; SR 81021, 2007.

    Google Scholar 

  53. Brantley JN, Verla TD. Use of placental membranes for the treatment of chronic diabetic foot ulcers. Adv Wound Care. 2015;4(9):545–59. doi:10.1089/wound.2015.0634.

    Article  Google Scholar 

  54. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13.

    Article  CAS  PubMed  Google Scholar 

  55. Gravante G, Di Fede MC, Araco A, Grimaldi M, De Angelis B, et al. A randomized trial comparing ReCell system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns. Burns. 2007;33:966–72.

    Article  CAS  PubMed  Google Scholar 

  56. Wood FM, Giles N, Stevenson A, Rea S, Fear M. Characterisation of the cell suspension harvested from the dermal epidermal junction using a ReCell kit. Burns. 2012;38:44–51.

    Article  PubMed  Google Scholar 

  57. Centanni JM, Straseski JA, Wicks A, Hank JA, Rasmussen CA, et al. StrataGraft skin substitutes well-tolerated and is not acutely immunogenic in patients with traumatic wounds. Ann Surg. 2011;253:1–12.

    Article  Google Scholar 

  58. Marra KG, Rubin JP. The potential of adipose-derived stem cells in craniofacial repair and regeneration. Birth Defects Res C Embryo Today. 2012;96:95–7.

    Article  CAS  PubMed  Google Scholar 

  59. Cazzell SM, Lange DL, Dickerson JE, Slade HB. The management of diabetic foot ulcers with porcine small intestine submucosa tri-layer matrix: a randomized controlled trial. Adv Wound Care. 2015;4(12):711–8. doi:10.1089/wound.2015.0645.

    Article  Google Scholar 

  60. Duan-Arnold Y, Gyurdieva A, Johnson A, Uveges TE, Jacobstein DA, Danilkovitch A. Retention of endogenous viable cells enhances the anti-inflammatory activity of cryopreserved amnion. Advances Wound Care. 2015;4(9):523–33. doi:10.1089/wound.2015.0636.

    Article  Google Scholar 

  61. Hart CE, Loewen-Rodriguez A, Lessem J. Dermagraft : use in the treatment of chronic wounds. Adv Wound Care. 2011; doi:10.1089/wound.2011.0282.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Soejima K, Shimoda K, Kashimura T, Yamaki T, Kono T, Sakurai H, Nakazawa H. Wound dressing material containing lyophilized allogeneic cultured cells. Cryobiology. 2013;66:210–4.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Y, Gan SU, Lin G, Lim YT, Masilamani J, Mustafa FB, Phua ML, Rivino L, Phan TT, Lee KO, Calne R, MacAry PA. Characterization of human umbilical cord lining-derived epithelial cells and tranplantation potential. Cell Transplant. 2011;20:1827–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Ann Applegate .

Editor information

Editors and Affiliations

Additional information

This article is dedicated to Sir Roger Moore (who was the dear Godfather of the Applegate Lab) and Lady Kristina for their continued support in the treatment of burned children, prevention and their rehabilitation.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Applegate, L.A., Jafari, P., Scaletta, C., de Buys Roessingh, A., Raffoul, W., Hirt-Burri, N. (2017). Progenitor Skin Cell Therapy and Evolution of Medical Applications. In: Eskes, C., van Vliet, E., Maibach, H. (eds) Alternatives for Dermal Toxicity Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-50353-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50353-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50351-6

  • Online ISBN: 978-3-319-50353-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics