Skip to main content

Sigma-1 Receptor Agonists and Their Clinical Implications in Neuropsychiatric Disorders

  • Chapter
  • First Online:
Sigma Receptors: Their Role in Disease and as Therapeutic Targets

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 964))

Abstract

Accumulating evidence suggests that sigma-1 receptors play a role in the pathophysiology of neuropsychiatric diseases, as well as in the mechanisms of some selective serotonin reuptake inhibitors (SSRIs). Among the SSRIs, the order of affinity for sigma-1 receptors is as follows: fluvoxamine > sertraline > fluoxetine > escitalopram > citalopram >> paroxetine. Some SSRIs (e.g., fluvoxamine, fluoxetine and escitalopram) and other drugs (donepezil , ifenprodil , dehydroepiandeterone (DHEA)) potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC12 cells, and these effects could be antagonized by the selective sigma-1 receptor antagonist NE-100. Furthermore, fluvoxamine, donepezil, and DHEA, but not paroxetine or sertraline, improved phencyclidine-induced cognitive deficits in mice, and these effects could be antagonized by NE-100. Several clinical studies showed that sigma-1 receptor agonists such as fluvoxamine and ifenprodil could have beneficial effects in patients with neuropsychiatric disorders. In this chapter, the authors will discuss the role of sigma-1 receptors in the mechanistic action of some SSRIs, donepezil, neurosteroids, and ifenprodil, and the clinical implications for sigma-1 receptor agonists .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin W, Eades CE, Thompson JA, Huppler RE (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    CAS  PubMed  Google Scholar 

  2. Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fishback JA, Robson MJ, Xu YT, Matsumoto RR (2010) Sigma receptors: potential targets for a new class of antidepressant drug. Pharmacol Ther 127:271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanner M, Moebius FF, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigma-1 binding site. Proc Natl Acad Sci U S A 93:8072–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  6. Palmer CP, Mahen R, Schnell E, Djamgoz MB, Aydar E (2007) Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 67:11166–11175

    Article  CAS  PubMed  Google Scholar 

  7. Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R (2000) Expression of the purported sigma-1 receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 20:375–387

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi T, Su TP (2004) Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs 18:269–284

    Article  CAS  PubMed  Google Scholar 

  9. Hayashi T, Su TP (2008) An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma1 receptor ligand. Expert Opin Ther Targets 12:45–58

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  12. Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP (2011) Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 15:557–577

    Article  CAS  PubMed  Google Scholar 

  13. Marrazzo A, Caraci F, Salinaro ET, Su TP, Copani A, Ronsisvalle G (2005) Neuroprotective effects of sigma-1 receptor agonists against β-amyloid-induced toxicity. Neuroreport 16:1223–1226

    Article  CAS  PubMed  Google Scholar 

  14. Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP, Wang JQ, Buch S (2010) Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implication for increased monocyte transmigration. Blood 115:4951–4962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashimoto K, Ishiwata K (2006) Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr Pharm Des 12:3857–3876

    Article  CAS  PubMed  Google Scholar 

  16. Hashimoto K (2013) Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression. Prog Neurobiol 100:15–29

    Article  CAS  PubMed  Google Scholar 

  17. Hashimoto K (2015) Targeting sigma-1 receptor chaperone in the treatment of peinatal brain injury. Exp Neurol 265:118–121

    Article  CAS  PubMed  Google Scholar 

  18. Hashimoto K (2015) Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J Pharmacol Sci 127:6–9

    Article  CAS  PubMed  Google Scholar 

  19. Kunitachi S, Fujita Y, Ishima T, Kohno M, Horio M, Tanibuchi Y et al (2009) Phencyclidine- induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors. Brain Res 1279:189–196

    Article  CAS  PubMed  Google Scholar 

  20. Ishima T, Nishimura T, Iyo M, Hashimoto K (2008) Potentiation of nerve growth factor induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1656–1659

    Article  CAS  Google Scholar 

  21. Ishikawa M, Sakata M, Ishii K, Kimura Y, Oda Y, Toyohara J, Wu J, Ishiwata K, Iyo M, Hashimoto K (2009) High occupancy of sigma-1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503. Int J Neuropsychopharmacol 12:1127–1131

    Article  CAS  PubMed  Google Scholar 

  22. Su TP, London ED, Jaffe JH (1988) Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240:219–221

    Article  CAS  PubMed  Google Scholar 

  23. Su TP, Schell SE, Ford-Rice FY, London ED (1988) Correlation of inhibitory potencies of putative antagonists for sigma receptors in brain and spleen. Eur J Pharmacol 148:467–470

    Article  CAS  PubMed  Google Scholar 

  24. Hashimoto K, Fujita Y, Iyo M (2007) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors. Neuropsychopharmacology 32:514–521

    Article  CAS  PubMed  Google Scholar 

  25. Hashimoto K, London ED (1993) Further characterization of [3H]ifenprodil binding to sigma receptors in rat brain. Eur J Pharmacol 236:159–163

    Article  CAS  PubMed  Google Scholar 

  26. Hashimoto K, Mantione CR, Spada MR, Neumeyer JL, London ED (1994) Further characterization of [3H]ifenprodil binding in rat brain. Eur J Pharmacol 266:67–77

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto K, London ED (1995) Interactions of erythro-ifenprodil, threo-ifenprodil, erythro-idoifenprodil, and eloprodil with subtypes of sigma receptors. Eur J Pharmacol 273:307–310

    Article  CAS  PubMed  Google Scholar 

  28. Ishima T, Hashimoto K (2012) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors. PLoS One 7:e37989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kishimoto A, Kaneko M, Gotoh Y, Hashimoto K (2012) Ifenprodil for the treatment of flashbacks in female posttraumatic stress disorder patients with a history of childhood sexual abuse. Biol Psychiatry 71:e7–e8

    Article  PubMed  Google Scholar 

  30. Sasaki T, Hashimoto K, Okawada K, Tone J, Machizawa A, Tano A, Nakazato M, Iyo M (2013) Ifenprodil for the treatment of flashbacks in adolescent female posttraumatic stress disorder patients with a history of abuse. Psychother Psychosom 82:344–345

    Article  PubMed  Google Scholar 

  31. Hashimoto K, Sasaki T, Kishimoto A (2013) Old drug ifenprodil, new hope for PTSD with a history of childhood sbuse. Psychopharmacology 227:375–376

    Article  CAS  PubMed  Google Scholar 

  32. Goodnick PJ, Goldstein BJ (1998) Selective serotonin reuptake inhibitors in affective disorders-I: basic pharmacology. J Psychopharmacol 12(3 Suppl B):S5–S20

    Article  CAS  PubMed  Google Scholar 

  33. Stahl SM (1998) Using secondary binding properties to select a not so selective serotonin selective reuptake inhibitor. J Clin Psychiatry 59:642–643

    Article  CAS  PubMed  Google Scholar 

  34. Nemeroff CB, Owens MJ (2004) Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr 9(6 Suppl 4):23–31

    Article  PubMed  Google Scholar 

  35. Narita N, Hashimoto K, Tomitaka S, Minabe Y (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 307:117–119

    Article  CAS  PubMed  Google Scholar 

  36. Ishima T, Fujita Y, Hashimoto K (2014) Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol 727:167–173

    Article  CAS  PubMed  Google Scholar 

  37. Ishikawa M, Ishiwata K, Ishii K, Kimura Y, Sakata M, Naganawa M, Oda K, Miyatake R, Fujisaki M, Shimizu E, Shirayama Y, Iyo M, Hashimoto K (2007) High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503. Biol Psychiatry 62:878–883

    Article  CAS  PubMed  Google Scholar 

  38. Cohen RM, Weingartner H, Smallberg SA, Pickar D, Murphy DL (1982) Effort and cognition in depression. Arch Gen Psychiatry 39:593–597

    Article  CAS  PubMed  Google Scholar 

  39. Porter RJ, Gallagher P, Thompson JM, Young AH (2003) Neurocognitive impairment in drug-free patients with major depressive disorder. Br J Psychiatry 182:214–220

    Article  PubMed  Google Scholar 

  40. Hashimoto K (2009) Sigma-1 receptors and selective serotonin reuptake inhibitors: clinical implications of their relationship. Cent Nerv Syst Agents Med Chem 9:197–204

    Article  CAS  PubMed  Google Scholar 

  41. Hindmarch I, Hashimoto K (2010) Cognition and depression: the effects of fluvoxamine, a sigma-1 receptor agonist, reconsidered. Hum Psychopharmacol 25:193–200

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M, Kimura A, Iyo M, Hashimoto K (2012) Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One 7:e42676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takebayashi M, Hayashi T, Su TP (2002) Nerve growth factorinduced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants. J Pharmacol Exp Ther 303:1227–1237

    Article  CAS  PubMed  Google Scholar 

  44. Nishimura T, Ishima T, Iyo M, Hashimoto K (2008) Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS ONE 3:e2558

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ishima T, Fujita Y, Kohno M, Kunitachi S, Horio M, Takatsu Y, Minase T, Tanibuchi Y, Hagiwara H, Iyo M, Hashimoto K (2009) Improvement of phencyclidine-induced cognitive deficits in mice by subsequent subchronic administration of fluvoxamine, but not sertraline. Open Clin Chem J 2:7–11

    Article  CAS  Google Scholar 

  46. Perez A, Ashford JJ (1990) A double-blind, randomized comparison of fluvoxamine with mianserin in depressive illness. Curr Med Res Opin 12:234–241

    Article  CAS  PubMed  Google Scholar 

  47. Mandelli L, Serretti A, Colombo C, Florita M, Santoro A, Rossini D, Zanardi R, Smeraldi E (2006) Improvement of cognitive functioning in mood disorder patients with depressive symptomatic recovery during treatment: an exploratory analysis. Psychiatry Clin Neurosci 60:598–604

    Article  PubMed  Google Scholar 

  48. Iyo M, Shirayama Y, Watanabe H, Fujisaki M, Miyatake R, Fukami G, Shiina A, Nakazato M, Shiraishi T, Ookami T, Hashimoto K (2008) Fluvoxamine as a sigma-1 receptor agonist improved cognitive impairments in a patient with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1072–1073

    Article  CAS  Google Scholar 

  49. Niitsu T, Shirayama Y, Fujisaki M, Hashimoto K, Iyo M (2010) Fluvoxamine improved negative symptoms and cognitive impairments in a patient with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 34:1345–1346

    Article  Google Scholar 

  50. Niitsu T, Fujisaki M, Shiina A, Yoshida T, Hasegawa T, Kanahara N, Hashimoto T, Shiraishi T, Fukami G, Nakazato M, Shirayama Y, Hashimoto K, Iyo M (2012) A randomized, double-blind, placebo-controlled trial of fluvoxamine in patients with schizophrenia: a preliminary study. J Clin Psychopharmacol 32:593–601

    Article  CAS  PubMed  Google Scholar 

  51. Niitsu T, Iyo M, Hashimoto K (2012) Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in neuropsychiatric diseases. Curr Pharm Des 18:875–883

    Article  CAS  PubMed  Google Scholar 

  52. Hamoda H, Osser DN (2008) The psychopharmacology algorithm project at the Harvard South Shore Program: an update on psychotic depression. Harv Rev Psychiatry 16:235–247

    Article  PubMed  Google Scholar 

  53. Gatti F, Bellini L, Gasperini M, Perez J, Zanardi R, Smeraldi E (1996) Fluvoxamine alone in the treatment of delusional depression. Am J Psychiatry 153:414–416

    Article  CAS  PubMed  Google Scholar 

  54. Zanardi R, Franchini L, Serretti A, Perez J, Smeraldi E (2000) Venlafaxine versus fluvoxamine in the treatment of delusional depression: a pilot double-blind controlled study. J Clin Psychiatry 61:26–29

    Article  CAS  PubMed  Google Scholar 

  55. Zanardi R, Franchini L, Gasperini M, Smeraldi E, Perez J (1997) Long-term treatment of psychotic (delusional) depression with fluvoxamine: an open pilot study. Int Clin Psychopharmacol 12:195–197

    Article  CAS  PubMed  Google Scholar 

  56. Hayashi T, Su TP (2005) Understanding the role of sigma-1 receptors in psychotic depression. Psychiatric Times 22:54–63

    Google Scholar 

  57. Stahl SM (2005) Antidepressant treatment of psychotic major depression: potential role of the sigma receptor. CNS Spectr 10:319–323

    Article  PubMed  Google Scholar 

  58. Furuse T, Hashimoto K (2009) Fluvoxamine monotherapy for psychotic depression: the potential role of sigma-1 receptors. Ann General Psychiatry 8:26

    Article  Google Scholar 

  59. Kishimoto A, Todani A, Miura J, Kitagaki T, Hashimoto K (2010) The opposite effects of fluvoxamine and sertraline in the treatment of psychotic major depression: a case report. Ann General Psychiatry 9:23

    Article  Google Scholar 

  60. Ishikawa M, Hashimoto K (2010) The role of sigma-1 receptors in the pathophysiology of neuropsychiatric diseases. J Recept Ligand Channel Res 3:25–36

    CAS  Google Scholar 

  61. Girard TD, Pandharipande PP, Ely EW (2008) Delirium in the intensive care unit. Crit Care 12(Suppl 3):S3

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fong TG, Tulebaev SR, Inouye SK (2009) Delirium in elderly adults: diagnosis, prevention and treatment. Nat Rev Neurol 5:210–220

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maldonado JR (2008) Delirium in the acute care setting: characteristics, diagnosis and treatment. Crit Care Clin 24:657–722

    Article  CAS  PubMed  Google Scholar 

  64. Gunther ML, Morandi A, Ely EW (2008) Pathophysiology of delirium in the intensive care unit. Crit Care Clin 24:45–65

    Article  PubMed  Google Scholar 

  65. Solai LKK (2009) Delirium. In: Sadock BJ, Kaplan HI, Sadock VA (eds) Kaplan & Sadock’s Synopsis of Psychiatry, 9th edn. Wolter Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  66. Byerly MJ, Christensen RC, Evans D (1996) Delirium associated with a combination of sertraline, haloperidol, and benztropine. Am J Psychiatry 153:965–966

    CAS  PubMed  Google Scholar 

  67. Armstrong SC, Schweitzer SM (1997) Delirium associated with paroxetine and benztropine combination. Am J Psychiatry 154:581–582

    Article  CAS  PubMed  Google Scholar 

  68. Suzuki Y, Saito M, Someya T (2012) Delirium associated with duloxetine in a depressed patient with Alzheimer’s dementia. Psychiatry Clin Neurosci 66:166

    Article  PubMed  Google Scholar 

  69. Howe C, Ravasia S (2003) Venlafaxine-induced delirium. Can J Psychiatr 48:129

    Google Scholar 

  70. Alexander J, Nillsen A (2011) Venlafaxine-induced delirium. Aust NZ J Psychiatry 45:606

    Google Scholar 

  71. Furuse T, Hashimoto K (2010) Sigma-1 receptor agonist fluvoxamine for delirium in patients with Alzheimer’s disease. Ann General Psychiatry 9:6

    Article  Google Scholar 

  72. Furuse T, Hashimoto K (2010) Sigma-1 receptor agonist fluvoxamine for delirium in intensive care units: report of five cases. Ann General Psychiatry 9:18

    Article  Google Scholar 

  73. Furuse T, Hashimoto K (2010) Sigma-1 receptor agonist fluvoxamine for postoperative delirium in older adults: report of three cases. Ann General Psychiatry 9:28

    Article  Google Scholar 

  74. Hashimoto K, Furuse T (2012) Sigma-1 receptor agonist fluvoxamine for delirium in older adults. Int J Geriatr Psychiatry 27:981–983

    Article  PubMed  Google Scholar 

  75. Tandon R, Nasrallah HA, Keshavan MS (2009) Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res 110:1–23

    Article  PubMed  Google Scholar 

  76. de Koning MB, Bloemen OJN, van Amelsvoort TAM, Becker HE, Nieman DH, van der Gaag M, Linszen DH (2009) Early intervention in patients at ultra high risk of psychosis: benefits and risks. Acta Psychiatr Scand 119:426–442

    Article  PubMed  Google Scholar 

  77. Liu CC, Demjaha A (2013) Antipsychotic interventions in prodromal psychosis: safety issues. CNS Drugs 27:197–205

    Article  CAS  PubMed  Google Scholar 

  78. Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O, Stieglitz RD, Vita A, McGuire P, Borgwardt S (2012) Cognitive functioning in prodromal psychosis: a meta-analysis. Arch Gen Psychiatry 69:562–571

    PubMed  Google Scholar 

  79. Hashimoto K (2009) Can the sigma-1 receptor agonist fluvoxamine prevent schizophrenia? CNS Neurol Disord Drug Targets 8:470–474

    Article  CAS  PubMed  Google Scholar 

  80. Tadokoro S, Kanahara N, Kikuchi S, Hashimoto K, Iyo M (2011) Fluvoxamine may prevent onset of psychosis: a case report of a patient at ultra-high risk of psychotic disorder. Ann General Psychiatry 10:26

    Article  Google Scholar 

  81. Owens DGC (1999) Akathisia. In: A guide to the extrapyramidal side- Effects of antipsychotic drugs. Cambridge University Press, New York, N Y, pp 130–162

    Chapter  Google Scholar 

  82. Sachdev PS (2005) Neuroleptic-induced movement disorders: an overview. Psychiatr Clin North Am 28:255–274

    Article  PubMed  Google Scholar 

  83. Kumar R, Sachdev PS (2009) Akathisia and second-generation antipsychotic drugs. Akathisia and second-generation antipsychotic drugs. Curr Opin Psychiatry 22:293–299

    Article  PubMed  Google Scholar 

  84. Furuse T, Hashimoto K (2010d) Fluvoxamine for aripiprazole-associated akathisia in patients with schizophrenia: a potential role of sigma-1 receptors. Ann General Psychiatry 9:11

    Article  Google Scholar 

  85. Furuse T, Hashimoto K (2010e) Fluvoxamine for blonanserin-associated akathisia in patients with schizophrenia: report of five cases. Ann General Psychiatry 9:17

    Article  Google Scholar 

  86. Albayrak Y, Hashimoto K (2013) Beneficial effects of sigma-1 agonist fluvoxamine for tardive dyskinesia and tardive akathisia in patients with schizophrenia: report of three cases. Psychiatry Investig 10:417–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Walker JM, Martin WJ, Hohmann AG, Hemstreet MK, Roth JS, Leitner ML, Weiser SD, Patrick SL, Patrick RL, Matsumoto RR (1994) Role of sigma receptors in brain mechansism of movement. In: Itzhak Y (ed) Sigma receptors. Academic Press, New York, pp 205–224

    Google Scholar 

  88. Albayrak Y, Hashimoto K (2012) Beneficial effects of the sigma-1 agonist fluvoxamine for tardive dyskinesia in patients with post-psychotic depressive disorder of schizophrenia: report of 5 cases. Prim Care Companion CNS Disord 14:12br0140

    Google Scholar 

  89. Albayrak Y, Ekinci O (2012) Duloxetine-associated tardive dyskinesia resolved with fluvoxamine: a case report. J Clin Psychopharmacol 32:723–724

    Article  PubMed  Google Scholar 

  90. Cayköylü A, Albayrak Y, Uğurlu GK, Ekinci O (2011) Beneficial effects of fluvoxamine for hemiballism in a patient with depressive disorder: a case report. Acta Neurol Belg 111:62–65

    PubMed  Google Scholar 

  91. Albayrak Y, Uğurlu GK, Uğurlu M, Cayköylü A (2012) Beneficial effects of fluvoxamine for chorea in a patient with Huntington’s disease: a case report. Prim Care Companion CNS Disord 14:12l01369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this chapter

Cite this chapter

Albayrak, Y., Hashimoto, K. (2017). Sigma-1 Receptor Agonists and Their Clinical Implications in Neuropsychiatric Disorders. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Advances in Experimental Medicine and Biology, vol 964. Springer, Cham. https://doi.org/10.1007/978-3-319-50174-1_11

Download citation

Publish with us

Policies and ethics