Skip to main content

Lessons from Animal Models of Cytoplasmic Intermediate Filament Proteins

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 82))

Abstract

Cytoplasmic intermediate filaments (IFs) represent a major cytoskeletal network contributing to cell shape, adhesion and migration as well as to tissue resilience and renewal in numerous bilaterians, including mammals. The observation that IFs are dispensable in cultured mammalian cells, but cause tissue-specific, life-threatening disorders, has pushed the need to investigate their function in vivo. In keeping with human disease, the deletion or mutation of murine IF genes resulted in highly specific pathologies. Epidermal keratins, together with desmin, are essential to protect corresponding tissues against mechanical force but also participate in stabilizing cell adhesion and in inflammatory signalling. Surprisingly, other IF proteins contribute to tissue integrity to a much lesser extent than anticipated, pointing towards their role in stress situations. In support, the overexpression of small chaperones or the interference with inflammatory signalling in several settings has been shown to rescue severe tissue pathologies that resulted from the expression of mutant IF proteins. It stills remains an open issue whether the wide range of IF disorders share similar pathomechanisms. Moreover, we lack an understanding how IF proteins participate in signalling processes. Now, with a large number of mouse models in hand, the next challenge will be to develop organotypic cell culture models to dissect pathomechanisms at the molecular level, to employ Crispr/Cas-mediated genome engineering to optimize models and, finally, to combine available animal models with medicinal chemistry for the development of molecular therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMP:

adenosine monophosphate

ATP:

adenosine triphosphate

AxD:

Alexander disease

BCC:

basal cell carcinoma

CFTR:

cystic fibrosis transmembrane conductance regulator

DAMPs:

danger-associated molecular patterns

E:

embryonic day

EBS:

epidermolysis bullosa simplex

EGFP:

enhanced green fluorescent protein

GFAP:

glial fibrillary acidic protein

GLUT:

glucose transporter

IF:

intermediate filament

IFN:

interferon

IL-:

interleukin-

K:

keratin

KI:

knock in

KO:

knock out

KtyI:

keratin type I

KtyII:

keratin type II

MDBs:

Mallory-Denk bodies

MECD:

Meesmann epithelial corneal dystrophy

MHC:

major histocompatibility complex

NF-:

neurofilament-

NF-κB:

nuclear factor-kappa B

ROS:

reactive oxygen species

Tg:

transgenic

TNF:

tumour necrosis factor

TNFR:

tumour necrosis factor receptor

TPA:

12-O-tetradecanoylphorbol-13-acetate

TSLP:

thymic stromal lymphopoietin

WT:

wild type

References

  • Adebola AA, Di Castri T, He CZ, Salvatierra LA, Zhao J, Brown K, Lin CS, Worman HJ, Liem RK (2015) Neurofilament light polypeptide gene N98S mutation in mice leads to neurofilament network abnormalities and a Charcot-Marie-Tooth type 2E phenotype. Hum Mol Genet 24(8):2163–2174. doi:10.1093/hmg/ddu736

    Article  CAS  PubMed  Google Scholar 

  • Alam CM, Silvander JS, Daniel EN, Tao GZ, Kvarnstrom SM, Alam P, Omary MB, Hanninen A, Toivola DM (2013) Keratin 8 modulates beta-cell stress responses and normoglycaemia. J Cell Sci 126(Pt 24):5635–5644. doi:10.1242/jcs.132795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alizadeh A, Clark J, Seeberger T, Hess J, Blankenship T, FitzGerald PG (2003) Targeted deletion of the lens fiber cell-specific intermediate filament protein filensin. Invest Ophthalmol Vis Sci 44(12):5252–5258

    Article  PubMed  Google Scholar 

  • Allen EH, Courtney DG, Atkinson SD, Moore JE, Mairs L, Toftgaard Poulsen E, Schiroli D, Maurizi E, Cole C, Hickerson RP, James J, Murgatroyd H, Smith FJ, MacEwen C, Enghild JJ, Nesbit MA, Leslie Pedrioli DM, McLean WH, Moore CB (2016) Keratin 12 missense mutation induces the unfolded protein response and apoptosis in Meesmann epithelial corneal dystrophy. Hum Mol Genet. doi:10.1093/hmg/ddw001

    PubMed Central  Google Scholar 

  • Alvarado DM, Coulombe PA (2014) Directed expression of a chimeric type II keratin partially rescues keratin 5-null mice. J Biol Chem 289(28):19435–19447. doi:10.1074/jbc.M114.553867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambatipudi S, Bhosale PG, Heath E, Pandey M, Kumar G, Kane S, Patil A, Maru GB, Desai RS, Watt FM, Mahimkar MB (2013) Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse. PLoS One 8(7):e70688. doi:10.1371/journal.pone.0070688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameen NA, Figueroa Y, Salas PJ (2001) Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. J Cell Sci 114(Pt 3):563–575

    CAS  PubMed  Google Scholar 

  • Arin MJ, Roop DR (2004) Inducible mouse models for inherited skin diseases: implications for skin gene therapy. Cells Tissues Organs 177(3):160–168. doi:10.1159/000079990

    Article  PubMed  Google Scholar 

  • Arin MJ, Oji V, Emmert S, Hausser I, Traupe H, Krieg T, Grimberg G (2011) Expanding the keratin mutation database: novel and recurrent mutations and genotype-phenotype correlations in 28 patients with epidermolytic ichthyosis. Br J Dermatol 164(2):442–447. doi:10.1111/j.1365-2133.2010.10096.x

    Article  CAS  PubMed  Google Scholar 

  • Asghar MN, Silvander JS, Helenius TO, Lahdeniemi IA, Alam C, Fortelius LE, Holmsten RO, Toivola DM (2015) The amount of keratins matters for stress protection of the colonic epithelium. PLoS One 10(5):e0127436. doi:10.1371/journal.pone.0127436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bar J, Kumar V, Roth W, Schwarz N, Richter M, Leube RE, Magin TM (2014) Skin fragility and impaired desmosomal adhesion in mice lacking all keratins. J Invest Dermatol 134(4):1012–1022. doi:10.1038/jid.2013.416

    Article  PubMed  CAS  Google Scholar 

  • Baribault H, Price J, Miyai K, Oshima RG (1993) Mid-gestational lethality in mice lacking keratin 8. Genes Dev 7(7A):1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Baribault H, Penner J, Iozzo RV, Wilson-Heiner M (1994) Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev 8(24):2964–2973

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Zelano J, Pekna M, Wilhelmsson U, Pekny M, Cullheim S (2013) Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice. PLoS One 8(11):e79395. doi:10.1371/journal.pone.0079395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi N, Depianto D, McGowan K, Gu C, Coulombe PA (2005) Exploiting the keratin 17 gene promoter to visualize live cells in epithelial appendages of mice. Mol Cell Biol 25(16):7249–7259. doi:10.1128/mcb.25.16.7249-7259.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block J, Schroeder V, Pawelzyk P, Willenbacher N, Koster S (2015) Physical properties of cytoplasmic intermediate filaments. Biochim Biophys Acta 1853(11 Pt B):3053–3064. doi:10.1016/j.bbamcr.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  • Bocquet A, Berges R, Frank R, Robert P, Peterson AC, Eyer J (2009) Neurofilaments bind tubulin and modulate its polymerization. J Neurosci 29(35):11043–11054. doi:10.1523/JNEUROSCI.1924-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Bohnekamp J, Cryderman DE, Paululat A, Baccam GC, Wallrath LL, Magin TM (2015) A Drosophila model of epidermolysis Bullosa Simplex. J Invest Dermatol 135(8):2031–2039. doi:10.1038/jid.2015.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomont P (2016) Degradation of the intermediate filament family by Gigaxonin. Methods Enzymol 569:215–231. doi:10.1016/bs.mie.2015.07.009

    Article  PubMed  Google Scholar 

  • Bomont P, Cavalier L, Blondeau F, Ben Hamida C, Belal S, Tazir M, Demir E, Topaloglu H, Korinthenberg R, Tuysuz B, Landrieu P, Hentati F, Koenig M (2000) The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 26(3):370–374. doi:10.1038/81701

    Article  CAS  PubMed  Google Scholar 

  • Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M, Rodarte J, Tidball JG (2001) Desmin integrates the three-dimensional mechanical properties of muscles. Am J Physiol Cell Physiol 280(1):C46–C52

    CAS  PubMed  Google Scholar 

  • Bornheim R, Muller M, Reuter U, Herrmann H, Bussow H, Magin TM (2008) A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice. J Cell Sci 121(Pt 22):3737–3746. doi:10.1242/jcs.030312

    Article  CAS  PubMed  Google Scholar 

  • Bose A, Teh MT, Mackenzie IC, Waseem A (2013) Keratin k15 as a biomarker of epidermal stem cells. Int J Mol Sci 14(10):19385–19398. doi:10.3390/ijms141019385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossinger O, Fukushige T, Claeys M, Borgonie G, McGhee JD (2004) The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol 268(2):448–456. doi:10.1016/j.ydbio.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  • Bouameur JE, Favre B, Borradori L (2014a) Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases. J Invest Dermatol 134(4):885–894. doi:10.1038/jid.2013.498

    Article  CAS  PubMed  Google Scholar 

  • Bouameur JE, Favre B, Fontao L, Lingasamy P, Begre N, Borradori L (2014b) Interaction of plectin with keratins 5 and 14: dependence on several plectin domains and keratin quaternary structure. J Invest Dermatol 134(11):2776–2783. doi:10.1038/jid.2014.255

    Article  CAS  PubMed  Google Scholar 

  • Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565:7–13. doi:10.1016/j.neulet.2014.01.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown A (2003) Live-cell imaging of slow axonal transport in cultured neurons. Methods Cell Biol 71:305–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne C, Tainsky M, Fuchs E (1994) Programming gene expression in developing epidermis. Development 120(9):2369–2383

    CAS  PubMed  Google Scholar 

  • Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340. doi:10.1038/nrm1619

    Article  CAS  PubMed  Google Scholar 

  • Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313(10):2063–2076. doi:10.1016/j.yexcr.2007.03.033

    Article  CAS  PubMed  Google Scholar 

  • Carberry K, Wiesenfahrt T, Geisler F, Stocker S, Gerhardus H, Uberbach D, Davis W, Jorgensen E, Leube RE, Bossinger O (2012) The novel intestinal filament organizer IFO-1 contributes to epithelial integrity in concert with ERM-1 and DLG-1. Development 139(10):1851–1862. doi:10.1242/dev.075788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanon MJ, Walko G, Winter L, Wiche G (2013) Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol 140(1):33–53. doi:10.1007/s00418-013-1102-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caulin C, Ware CF, Magin TM, Oshima RG (2000) Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 149(1):17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Cheng X, Merched-Sauvage M, Caulin C, Roop DR, Koch PJ (2006) An unexpected role for keratin 10 end domains in susceptibility to skin cancer. J Cell Sci 119(Pt 24):5067–5076. doi:10.1242/jcs.03298

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Jaeger K, Den Z, Koch PJ, Sundberg JP, Roop DR (2008) Mice expressing a mutant Krt75 (K6hf) allele develop hair and nail defects resembling pachyonychia congenita. J Invest Dermatol 128(2):270–279. doi:10.1038/sj.jid.5701038

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Guldiken N, Spurny M, Mohammed HH, Haybaeck J, Pollheimer MJ, Fickert P, Gassler N, Jeon MK, Trautwein C, Strnad P (2015) Loss of keratin 19 favours the development of cholestatic liver disease through decreased ductular reaction. J Pathol 237(3):343–354. doi:10.1002/path.4580

    Article  CAS  PubMed  Google Scholar 

  • Chernyatina AA, Guzenko D, Strelkov SV (2015) Intermediate filament structure: the bottom-up approach. Curr Opin Cell Biol 32:65–72. doi:10.1016/j.ceb.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  • Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155(7):1639–1651. doi:10.1016/j.cell.2013.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho KS, Yang L, Lu B, Feng Ma H, Huang X, Pekny M, Chen DF (2005) Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118(Pt 5):863–872. doi:10.1242/jcs.01658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou CF, Smith AJ, Omary MB (1992) Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J Biol Chem 267(6):3901–3906

    CAS  PubMed  Google Scholar 

  • Chung BM, Arutyunov A, Ilagan E, Yao N, Wills-Karp M, Coulombe PA (2015) Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes. J Cell Biol 208(5):613–627. doi:10.1083/jcb.201408026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke WT, Edwards B, McCullagh KJ, Kemp MW, Moorwood C, Sherman DL, Burgess M, Davies KE (2010) Syncoilin modulates peripherin filament networks and is necessary for large-calibre motor neurons. J Cell Sci 123(Pt 15):2543–2552. doi:10.1242/jcs.059113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland DW, Yamanaka K, Bomont P (2009) Gigaxonin controls vimentin organization through a tubulin chaperone-independent pathway. Hum Mol Genet 18(8):1384–1394. doi:10.1093/hmg/ddp044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colas J, Faure G, Saussereau E, Trudel S, Rabeh WM, Bitam S, Guerrera IC, Fritsch J, Sermet-Gaudelus I, Davezac N, Brouillard F, Lukacs GL, Herrmann H, Ollero M, Edelman A (2012) Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Hum Mol Genet 21(3):623–634. doi:10.1093/hmg/ddr496

    Article  CAS  PubMed  Google Scholar 

  • Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79(4):679–694

    Article  CAS  PubMed  Google Scholar 

  • Cote F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Cotrina ML, Chen M, Han X, Iliff J, Ren Z, Sun W, Hagemann T, Goldman J, Messing A, Nedergaard M (2014) Effects of traumatic brain injury on reactive astrogliosis and seizures in mouse models of Alexander disease. Brain Res 1582:211–219. doi:10.1016/j.brainres.2014.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126(7):1459–1468. doi:10.1038/sj.jid.5700376

    Article  CAS  PubMed  Google Scholar 

  • Couillard-Despres S, Zhu Q, Wong PC, Price DL, Cleveland DW, Julien JP (1998) Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc Natl Acad Sci U S A 95(16):9626–9630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couillard-Despres S, Meier J, Julien JP (2000) Extra axonal neurofilaments do not exacerbate disease caused by mutant Cu,Zn superoxide dismutase. Neurobiol Dis 7(4):462–470. doi:10.1006/nbdi.2000.0296

    Article  CAS  PubMed  Google Scholar 

  • Coulombe PA, Lee CH (2012) Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest Dermatol 132(3 Pt 2):763–775. doi:10.1038/jid.2011.450

    Article  CAS  PubMed  Google Scholar 

  • Coulombe PA, Kerns ML, Fuchs E (2009) Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J Clin Invest 119(7):1784–1793. doi:10.1172/JCI38177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalpe G, Leclerc N, Vallee A, Messer A, Mathieu M, De Repentigny Y, Kothary R (1998) Dystonin is essential for maintaining neuronal cytoskeleton organization. Mol Cell Neurosci 10(5–6):243–257. doi:10.1006/mcne.1997.0660

    Article  CAS  Google Scholar 

  • Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735. doi:10.1146/annurev-immunol-031210-101405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Berker D, Wojnarowska F, Sviland L, Westgate GE, Dawber RP, Leigh IM (2000) Keratin expression in the normal nail unit: markers of regional differentiation. Br J Dermatol 142(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • De Jonghe P, Jordanova AK (1993) Charcot-Marie-Tooth neuropathy type 2E/1F. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) GeneReviews(R). University of Seattle, Seattle

    Google Scholar 

  • de Pablo Y, Nilsson M, Pekna M, Pekny M (2013) Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem Cell Biol 140(1):81–91. doi:10.1007/s00418-013-1110-0

    Article  PubMed  CAS  Google Scholar 

  • de Souza Martins SC, Agbulut O, Diguet N, Larcher JC, Paulsen BS, Rehen SK, Moura-Neto V, Paulin D, Li Z, Xue Z (2011) Dynamic expression of synemin isoforms in mouse embryonic stem cells and neural derivatives. BMC Cell Biol 12:51. doi:10.1186/1471-2121-12-51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68(3):451–463

    Article  PubMed  Google Scholar 

  • Depianto D, Kerns ML, Dlugosz AA, Coulombe PA (2010) Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet 42(10):910–914. doi:10.1038/ng.665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dequen F, Bomont P, Gowing G, Cleveland DW, Julien JP (2008) Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem 107(1):253–264. doi:10.1111/j.1471-4159.2008.05601.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiTommaso T, Cottle DL, Pearson HB, Schluter H, Kaur P, Humbert PO, Smyth IM (2014) Keratin 76 is required for tight junction function and maintenance of the skin barrier. PLoS Genet 10(10):e1004706. doi:10.1371/journal.pgen.1004706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • dos Santos G, Rogel MR, Baker MA, Troken JR, Urich D, Morales-Nebreda L, Sennello JA, Kutuzov MA, Sitikov A, Davis JM, Lam AP, Cheresh P, Kamp D, Shumaker DK, Budinger GR, Ridge KM (2015) Vimentin regulates activation of the NLRP3 inflammasome. Nat Commun 6:6574. doi:10.1038/ncomms7574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Sun Y, Zhang F, Zhang WK, Wang D, Wang Y, Cao X, Hu W, Xie C, Cuppoletti J, Magin TM, Wang H, Wu Z, Li N, Huang P (2012) Keratin K18 increases cystic fibrosis transmembrane conductance regulator (CFTR) surface expression by binding to its C-terminal hydrophobic patch. J Biol Chem 287(48):40547–40559. doi:10.1074/jbc.M112.403584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Lalonde R, Julien JP, Strazielle C (2005a) Mice with the deleted neurofilament of low-molecular-weight (Nefl) gene: 1. Effects on regional brain metabolism. J Neurosci Res 80(6):741–750. doi:10.1002/jnr.20449

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Strazielle C, Julien JP, Lalonde R (2005b) Mice with the deleted neurofilament of low molecular weight (Nefl) gene: 2. Effects on motor functions and spatial orientation. J Neurosci Res 80(6):751–758. doi:10.1002/jnr.20493

    Article  CAS  PubMed  Google Scholar 

  • Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113(Pt 13):2455–2462

    CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Margita A, Lazzarini RA (1999a) Age-related atrophy of motor axons in mice deficient in the mid-sized neurofilament subunit. J Cell Biol 146(1):181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elder GA, Friedrich VL Jr, Pereira D, Tu PH, Zhang B, Lee VM, Lazzarini RA (1999b) Mice with disrupted midsized and heavy neurofilament genes lack axonal neurofilaments but have unaltered numbers of axonal microtubules. J Neurosci Res 57(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274(34):23996–24006

    Article  CAS  PubMed  Google Scholar 

  • Eriksson JE, Brautigan DL, Vallee R, Olmsted J, Fujiki H, Goldman RD (1992) Cytoskeletal integrity in interphase cells requires protein phosphatase activity. Proc Natl Acad Sci U S A 89(22):11093–11097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson JE, He T, Trejo-Skalli AV, Harmala-Brasken AS, Hellman J, Chou YH, Goldman RD (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 117(Pt 6):919–932. doi:10.1242/jcs.00906

    Article  CAS  PubMed  Google Scholar 

  • Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119(7):1763–1771. doi:10.1172/jci38339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errante LD, Wiche G, Shaw G (1994) Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system. J Neurosci Res 37(4):515–528. doi:10.1002/jnr.490370411

    Article  CAS  PubMed  Google Scholar 

  • Favre B, Schneider Y, Lingasamy P, Bouameur JE, Begre N, Gontier Y, Steiner-Champliaud MF, Frias MA, Borradori L, Fontao L (2011) Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin. Eur J Cell Biol 90(5):390–400. doi:10.1016/j.ejcb.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Coulombe PA (2015) A role for disulfide bonding in keratin intermediate filament organization and dynamics in skin keratinocytes. J Cell Biol 209(1):59–72. doi:10.1083/jcb.201408079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filali M, Dequen F, Lalonde R, Julien JP (2011) Sensorimotor and cognitive function of a NEFL(P22S) mutant model of Charcot-Marie-Tooth disease type 2E. Behav Brain Res 219(2):175–180. doi:10.1016/j.bbr.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  • Fischer H, Langbein L, Reichelt J, Praetzel-Wunder S, Buchberger M, Ghannadan M, Tschachler E, Eckhart L (2014) Loss of keratin K2 expression causes aberrant aggregation of K10, hyperkeratosis, and inflammation. J Invest Dermatol 134(10):2579–2588. doi:10.1038/jid.2014.197

    Article  CAS  PubMed  Google Scholar 

  • Fischer H, Langbein L, Reichelt J, Buchberger M, Tschachler E, Eckhart L (2015) Keratins K2 and K10 are essential for the epidermal integrity of plantar skin. J Dermatol Sci. doi:10.1016/j.jdermsci.2015.10.008

    PubMed  Google Scholar 

  • Fountoulakis M, Soumaka E, Rapti K, Mavroidis M, Tsangaris G, Maris A, Weisleder N, Capetanaki Y (2005) Alterations in the heart mitochondrial proteome in a desmin null heart failure model. J Mol Cell Cardiol 38(3):461–474. doi:10.1016/j.yjmcc.2004.12.008

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Roy S, Brady ST, Black MM (2005) Transport of neurofilaments in growing axons requires microtubules but not actin filaments. J Neurosci Res 79(4):442–450. doi:10.1002/jnr.20399

    Article  CAS  PubMed  Google Scholar 

  • Fu DJ, Thomson C, Lunny DP, Dopping-Hepenstal PJ, McGrath JA, Smith FJ, McLean WH, Pedrioli DM (2014) Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis. J Invest Dermatol 134(3):754–763. doi:10.1038/jid.2013.356

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Green H (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19(4):1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Ganay T, Boizot A, Burrer R, Chauvin JP, Bomont P (2011) Sensory-motor deficits and neurofilament disorganization in gigaxonin-null mice. Mol Neurodegener 6:25. doi:10.1186/1750-1326-6-25

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia ML, Lobsiger CS, Shah SB, Deerinck TJ, Crum J, Young D, Ward CM, TO C, Gotow T, Uchiyama Y, Ellisman MH, Calcutt NA, Cleveland DW (2003) NF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth. J Cell Biol 163(5):1011–1020. doi:10.1083/jcb.200308159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia ML, Rao MV, Fujimoto J, Garcia VB, Shah SB, Crum J, Gotow T, Uchiyama Y, Ellisman M, Calcutt NA, Cleveland DW (2009) Phosphorylation of highly conserved neurofilament medium KSP repeats is not required for myelin-dependent radial axonal growth. J Neurosci 29(5):1277–1284. doi:10.1523/jneurosci.3765-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pelagio KP, Muriel J, O’Neill A, Desmond PF, Lovering RM, Lund L, Bond M, Bloch RJ (2015) Myopathic changes in murine skeletal muscle lacking synemin. Am J Physiol Cell Physiol 308(6):C448–C462. doi:10.1152/ajpcell.00331.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert S, Loranger A, Marceau N (2004) Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol 24(16):7072–7081. doi:10.1128/MCB.24.16.7072-7081.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman RD, Khuon S, Chou YH, Opal P, Steinert PM (1996) The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 134(4):971–983

    Article  CAS  PubMed  Google Scholar 

  • Goldstein J, Horsley V (2012) Home sweet home: skin stem cell niches. Cell Mol Life Sci 69(15):2573–2582. doi:10.1007/s00018-012-0943-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Goodall MH, Ward CW, Pratt SJ, Bloch RJ, Lovering RM (2012) Structural and functional evaluation of branched myofibers lacking intermediate filaments. Am J Physiol Cell Physiol 303(2):C224–C232. doi:10.1152/ajpcell.00136.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto H, Yasui Y, Kawajiri A, Nigg EA, Terada Y, Tatsuka M, Nagata K, Inagaki M (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278(10):8526–8530. doi:10.1074/jbc.M210892200

    Article  CAS  PubMed  Google Scholar 

  • Grimm SL, Bu W, Longley MA, Roop DR, Li Y, Rosen JM (2006) Keratin 6 is not essential for mammary gland development. Breast Cancer Res 8(3):R29. doi:10.1186/bcr1504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruenbaum Y, Foisner R (2015) Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84:131–164. doi:10.1146/annurev-biochem-060614-034115

    Article  CAS  PubMed  Google Scholar 

  • Guldiken N, Zhou Q, Kucukoglu O, Rehm M, Levada K, Gross A, Kwan R, James LP, Trautwein C, Omary MB, Strnad P (2015) Human keratin 8 variants promote mouse acetaminophen hepatotoxicity coupled with c-jun amino-terminal kinase activation and protein adduct formation. Hepatology 62(3):876–886. doi:10.1002/hep.27891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann TL, Connor JX, Messing A (2006) Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci 26(43):11162–11173. doi:10.1523/JNEUROSCI.3260-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Hagemann TL, Boelens WC, Wawrousek EF, Messing A (2009) Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease. Hum Mol Genet 18(7):1190–1199. doi:10.1093/hmg/ddp013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann TL, Paylor R, Messing A (2013) Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease. J Neurosci 33(47):18698–18706. doi:10.1523/jneurosci.3693-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanbury R, Ling ZD, Wuu J, Kordower JH (2003) GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. J Comp Neurol 461(3):307–316. doi:10.1002/cne.10667

    Article  CAS  PubMed  Google Scholar 

  • Hapiak V, Hresko MC, Schriefer LA, Saiyasisongkhram K, Bercher M, Plenefisch J (2003) mua-6, a gene required for tissue integrity in Caenorhabditis elegans, encodes a cytoplasmic intermediate filament. Dev Biol 263(2):330–342

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8(10):774–785. doi:10.1038/nrm2249

    Article  CAS  PubMed  Google Scholar 

  • Helenius TO, Misiorek JO, Nystrom JH, Fortelius LE, Habtezion A, Liao J, Asghar MN, Zhang H, Azhar S, Omary MB, Toivola DM (2015) Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism. Mol Biol Cell 26(12):2298–2310. doi:10.1091/mbc.E14-02-0736

  • Hering L, Bouameur JE, Reichelt J, Magin TM, Mayer G (2016) Novel origin of lamin-derived cytoplasmic intermediate filaments in tardigrades. Elife 5:e11117. doi:10.7554/eLife.11117

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789. doi:10.1146/annurev.biochem.73.011303.073823

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8(7):562–573. doi:10.1038/nrm2197

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119(7):1772–1783. doi:10.1172/JCI38214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse M, Franz T, Tamai Y, Taketo MM, Magin TM (2000) Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality. EMBO J 19(19):5060–5070. doi:10.1093/emboj/19.19.5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse M, Grund C, Herrmann H, Brohl D, Franz T, Omary MB, Magin TM (2007) A mutation of keratin 18 within the coil 1A consensus motif causes widespread keratin aggregation but cell type-restricted lethality in mice. Exp Cell Res 313(14):3127–3140. doi:10.1016/j.yexcr.2007.05.019

    Article  CAS  PubMed  Google Scholar 

  • Hobbs RP, DePianto DJ, Jacob JT, Han MC, Chung BM, Batazzi AS, Poll BG, Guo Y, Han J, Ong S, Zheng W, Taube JM, Cihakova D, Wan F, Coulombe PA (2015) Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet 47(8):933–938. doi:10.1038/ng.3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130. doi:10.1016/j.ceb.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  • Irvine AD, Corden LD, Swensson O, Swensson B, Moore JE, Frazer DG, Smith FJ, Knowlton RG, Christophers E, Rochels R, Uitto J, McLean WH (1997) Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann’s corneal dystrophy. Nat Genet 16(2):184–187. doi:10.1038/ng0697-184

  • Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313(10):2050–2062. doi:10.1016/j.yexcr.2007.03.040

    Article  CAS  PubMed  Google Scholar 

  • Izmiryan A, Cheraud Y, Khanamiryan L, Leterrier JF, Federici T, Peltekian E, Moura-Neto V, Paulin D, Li Z, Xue ZG (2006) Different expression of synemin isoforms in glia and neurons during nervous system development. Glia 54(3):204–213. doi:10.1002/glia.20378

    Article  CAS  PubMed  Google Scholar 

  • Izmiryan A, Franco CA, Paulin D, Li Z, Xue Z (2009) Synemin isoforms during mouse development: multiplicity of partners in vascular and neuronal systems. Exp Cell Res 315(5):769–783. doi:10.1016/j.yexcr.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  • Jacomy H, Zhu Q, Couillard-Despres S, Beaulieu JM, Julien JP (1999) Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J Neurochem 73(3):972–984

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44(1):88–106. doi:10.3109/03602532.2011.602688

    Article  CAS  PubMed  Google Scholar 

  • Jahnel O, Hoffmann B, Merkel R, Bossinger O, Leube RE (2016) Mechanical probing of the intermediate filament-rich Caenorhabditis elegans intestine. Methods Enzymol 568:681–706. doi:10.1016/bs.mie.2015.08.030

    Article  PubMed  Google Scholar 

  • Jany PL, Hagemann TL, Messing A (2013) GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro 5(1):e00109. doi:10.1042/an20130003

    PubMed  PubMed Central  Google Scholar 

  • Jaquemar D, Kupriyanov S, Wankell M, Avis J, Benirschke K, Baribault H, Oshima RG (2003) Keratin 8 protection of placental barrier function. J Cell Biol 161(4):749–756. doi:10.1083/jcb.200210004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing R, Wilhelmsson U, Goodwill W, Li L, Pan Y, Pekny M, Skalli O (2007) Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. J Cell Sci 120(Pt 7):1267–1277. doi:10.1242/jcs.03423

    Article  CAS  PubMed  Google Scholar 

  • Kamphuis W, Kooijman L, Orre M, Stassen O, Pekny M, Hol EM (2015) GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer’s disease. Glia 63(6):1036–1056. doi:10.1002/glia.22800

  • Kao WW, Liu CY, Converse RL, Shiraishi A, Kao CW, Ishizaki M, Doetschman T, Duffy J (1996) Keratin 12-deficient mice have fragile corneal epithelia. Invest Ophthalmol Vis Sci 37(13):2572–2584

    CAS  PubMed  Google Scholar 

  • Karabinos A, Schmidt H, Harborth J, Schnabel R, Weber K (2001) Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development. Proc Natl Acad Sci U S A 98(14):7863–7868. doi:10.1073/pnas.121169998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karabinos A, Schulze E, Schunemann J, Parry DAD, Weber K (2003) In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. J Mol Biol 333(2):307–319

    Article  CAS  PubMed  Google Scholar 

  • Karabinos A, Schunemann J, Weber K (2004) Most genes encoding cytoplasmic intermediate filament (IF) proteins of the nematode Caenorhabditis elegans are required in late embryogenesis. Eur J Cell Biol 83(9):457–468. doi:10.1078/0171-9335-00407

    Article  CAS  PubMed  Google Scholar 

  • Kawajiri A, Yasui Y, Goto H, Tatsuka M, Takahashi M, Nagata K, Inagaki M (2003) Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol Biol Cell 14(4):1489–1500. doi:10.1091/mbc.E02-09-0612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp MW, Edwards B, Burgess M, Clarke WT, Nicholson G, Parry DAD, Davies KE (2009) Syncoilin isoform organization and differential expression in murine striated muscle. J Struct Biol 165(3):196–203. doi:10.1016/j.jsb.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  • Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA (2007) Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci U S A 104(36):14460–14465. doi:10.1073/pnas.0706486104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerns M, DePianto D, Yamamoto M, Coulombe PA (2010) Differential modulation of keratin expression by sulforaphane occurs via Nrf2-dependent and -independent pathways in skin epithelia. Mol Biol Cell 21(23):4068–4075. doi:10.1091/mbc.E10-02-0153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Wong P, Coulombe PA (2006) A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441(7091):362–365. doi:10.1038/nature04659

    Article  CAS  PubMed  Google Scholar 

  • Kolotuev I, Hyenne V, Schwab Y, Rodriguez D, Labouesse M (2013) A pathway for unicellular tube extension depending on the lymphatic vessel determinant Prox1 and on osmoregulation. Nat Cell Biol 15(2):157–168. doi:10.1038/ncb2662

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Tung VW, Aghajanian J, Xu Z (1998) Antagonistic roles of neurofilament subunits NF-H and NF-M against NF-L in shaping dendritic arborization in spinal motor neurons. J Cell Biol 140(5):1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriz J, Zhu Q, Julien JP, Padjen AL (2000) Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res 885(1):32–44

    Article  CAS  PubMed  Google Scholar 

  • Kroger C, Vijayaraj P, Reuter U, Windoffer R, Simmons D, Heukamp L, Leube R, Magin TM (2011) Placental vasculogenesis is regulated by keratin-mediated hyperoxia in murine decidual tissues. Am J Pathol 178(4):1578–1590. doi:10.1016/j.ajpath.2010.12.055

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroger C, Loschke F, Schwarz N, Windoffer R, Leube RE, Magin TM (2013) Keratins control intercellular adhesion involving PKC-alpha-mediated desmoplakin phosphorylation. J Cell Biol 201(5):681–692. doi:10.1083/jcb.201208162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Omary MB (1995) Identification and mutational analysis of the glycosylation sites of human keratin 18. J Biol Chem 270(20):11820–11827

    Article  CAS  PubMed  Google Scholar 

  • Ku NO, Omary MB (2006) A disease- and phosphorylation-related nonmechanical function for keratin 8. J Cell Biol 174(1):115–125. doi:10.1083/jcb.200602146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Michie S, Resurreccion EZ, Broome RL, Omary MB (2002) Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc Natl Acad Sci U S A 99(7):4373–4378. doi:10.1073/pnas.072624299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Fu H, Omary MB (2004) Raf-1 activation disrupts its binding to keratins during cell stress. J Cell Biol 166(4):479–485. doi:10.1083/jcb.200402051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku NO, Strnad P, Zhong BH, Tao GZ, Omary MB (2007) Keratins let liver live: mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology 46(5):1639–1649. doi:10.1002/hep.21976

    Article  CAS  PubMed  Google Scholar 

  • Ku NO, Toivola DM, Strnad P, Omary MB (2010) Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol 12(9):876–885. doi:10.1038/ncb2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucukoglu O, Guldiken N, Chen Y, Usachov V, El-Heliebi A, Haybaeck J, Denk H, Trautwein C, Strnad P (2014) High-fat diet triggers Mallory-Denk body formation through misfolding and crosslinking of excess keratin 8. Hepatology 60(1):169–178. doi:10.1002/hep.27068

    Article  CAS  PubMed  Google Scholar 

  • Kuga T, Kume H, Kawasaki N, Sato M, Adachi J, Shiromizu T, Hoshino I, Nishimori T, Matsubara H, Tomonaga T (2013) A novel mechanism of keratin cytoskeleton organization through casein kinase Ialpha and FAM83H in colorectal cancer. J Cell Sci 126(Pt 20):4721–4731. doi:10.1242/jcs.129684

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Pedroza LA, Mace EM, Seeholzer S, Cotsarelis G, Condino-Neto A, Payne AS, Orange JS (2011) The autoimmune regulator (AIRE), which is defective in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients, is expressed in human epidermal and follicular keratinocytes and associates with the intermediate filament protein cytokeratin 17. Am J Pathol 178(3):983–988. doi:10.1016/j.ajpath.2010.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Bouameur JE, Bar J, Rice RH, Hornig-Do HT, Roop DR, Schwarz N, Brodesser S, Thiering S, Leube RE, Wiesner RJ, Brazel CB, Heller S, Binder H, Loffler-Wirth H, Seibel P, Magin TM (2015) A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol 211(5):1057–1075. doi:10.1083/jcb.201404147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari SS, Varadaraj K (2014) Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration. Biochem Biophys Res Commun 452(4):986–991. doi:10.1016/j.bbrc.2014.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan R, Chen L, Looi K, Tao GZ, Weerasinghe SV, Snider NT, Conti MA, Adelstein RS, Xie Q, Omary MB (2015) PKC412 normalizes mutation-related keratin filament disruption and hepatic injury in mice by promoting keratin-myosin binding. Hepatology. doi:10.1002/hep.27965

    Google Scholar 

  • Lariviere RC, Julien JP (2004) Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58(1):131–148. doi:10.1002/neu.10270

    Article  CAS  PubMed  Google Scholar 

  • Larouche D, Tong X, Fradette J, Coulombe PA, Germain L (2008) Vibrissa hair bulge houses two populations of skin epithelial stem cells distinct by their keratin profile. FASEB J 22(5):1404–1415. doi:10.1096/fj.07-8109com

    Article  CAS  PubMed  Google Scholar 

  • Larsson A, Wilhelmsson U, Pekna M, Pekny M (2004) Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(−/−)Vim(−/−) mice. Neurochem Res 29(11):2069–2073

    Article  CAS  PubMed  Google Scholar 

  • Le Henaff C, Da Cunha MF, Hatton A, Tondelier D, Marty C, Collet C, Zarka M, Geoffroy V, Zatloukal K, Laplantine E, Edelman A, Sermet-Gaudelus I, Marie PJ (2016) Genetic deletion of keratin 8 corrects the altered bone formation and osteopenia in a mouse model of cystic fibrosis. Hum Mol Genet. doi:10.1093/hmg/ddw009

    PubMed  Google Scholar 

  • Lebkuechner I, Wilhelmsson U, Mollerstrom E, Pekna M, Pekny M (2015) Heterogeneity of Notch signaling in astrocytes and the effects of GFAP and vimentin deficiency. J Neurochem 135(2):234–248. doi:10.1111/jnc.13213

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Xu Z, Wong PC, Cleveland DW (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122(6):1337–1350

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Jang KH, Kim H, Lim Y, Kim S, Yoon HN, Chung IK, Roth J, Ku NO (2013) Predisposition to apoptosis in keratin 8-null liver is related to inactivation of NF-kappaB and SAPKs but not decreased c-Flip. Biol Open 2(7):695–702. doi:10.1242/bio.20134606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lepinoux-Chambaud C, Eyer J (2013) Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 140(1):13–22. doi:10.1007/s00418-013-1101-1

    Article  CAS  PubMed  Google Scholar 

  • Lessard JC, Coulombe PA (2012) Keratin 16-null mice develop palmoplantar keratoderma, a hallmark feature of pachyonychia congenita and related disorders. J Invest Dermatol 132(5):1384–1391. doi:10.1038/jid.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessard JC, Pina-Paz S, Rotty JD, Hickerson RP, Kaspar RL, Balmain A, Coulombe PA (2013) Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proc Natl Acad Sci U S A 110(48):19537–19542. doi:10.1073/pnas.1309576110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Colucci-Guyon E, Pincon-Raymond M, Mericskay M, Pournin S, Paulin D, Babinet C (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175(2):362–366. doi:10.1006/dbio.1996.0122

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet C, Paulin D (1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 139(1):129–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Stahlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28(3):468–481. doi:10.1038/sj.jcbfm.9600546

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Parlakian A, Coletti D, Alonso-Martin S, Hourde C, Joanne P, Gao-Li J, Blanc J, Ferry A, Paulin D, Xue Z, Agbulut O (2014) Synemin acts as a regulator of signalling molecules during skeletal muscle hypertrophy. J Cell Sci 127(Pt 21):4589–4601. doi:10.1242/jcs.143164

    Article  PubMed  CAS  Google Scholar 

  • Lieber RL, Schmitz MC, Mishra DK, Friden J (1994) Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions. J Appl Physiol (1985) 77(4):1926–1934

    CAS  Google Scholar 

  • Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, Raine CS (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17(4):607–615

    Article  CAS  PubMed  Google Scholar 

  • Liem RK, Messing A (2009) Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Invest 119(7):1814–1824. doi:10.1172/jci38003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindqvist J, Wistbacka N, Eriksson JE (2016) Studying nestin and its interrelationship with Cdk5. Methods Enzymol 568:509–535. doi:10.1016/bs.mie.2015.09.019

    Article  PubMed  Google Scholar 

  • Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, Pekny M, Chopp M (2014) Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 62(12):2022–2033. doi:10.1002/glia.22723

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E, Fuchs E (1995) The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J Cell Biol 129(5):1329–1344

    Article  CAS  PubMed  Google Scholar 

  • Loranger A, Duclos S, Grenier A, Price J, Wilson-Heiner M, Baribault H, Marceau N (1997) Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am J Pathol 151(6):1673–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loschke F, Seltmann K, Bouameur JE, Magin TM (2015) Regulation of keratin network organization. Curr Opin Cell Biol 32:56–64. doi:10.1016/j.ceb.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  • Loschke F, Homberg M, Magin TM (2016) Keratin isotypes control desmosome stability and dynamics through PKCalpha. J Invest Dermatol 136(1):202–213. doi:10.1038/JID.2015.403

    Article  CAS  PubMed  Google Scholar 

  • Lovering RM, O’Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ (2011) Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments. Am J Physiol Cell Physiol 300(4):C803–C813. doi:10.1152/ajpcell.00394.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Zimek A, Chen J, Hesse M, Bussow H, Weber K, Magin TM (2006) Keratin 5 knockout mice reveal plasticity of keratin expression in the corneal epithelium. Eur J Cell Biol 85(8):803–811. doi:10.1016/j.ejcb.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  • Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G (1998) The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci 111(Pt 21):3179–3188

    CAS  PubMed  Google Scholar 

  • Magin TM, Schroder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C, Melton DW (1998) Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J Cell Biol 140(6):1441–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magin TM, Hesse M, Meier-Bornheim R, Reichelt J (2004a) Developing mouse models to study intermediate filament function. Methods Cell Biol 78:65–94

    Article  CAS  PubMed  Google Scholar 

  • Magin TM, Reichelt J, Hatzfeld M (2004b) Emerging functions: diseases and animal models reshape our view of the cytoskeleton. Exp Cell Res 301(1):91–102. doi:10.1016/j.yexcr.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  • Mahammad S, Murthy SN, Didonna A, Grin B, Israeli E, Perrot R, Bomont P, Julien JP, Kuczmarski E, Opal P, Goldman RD (2013) Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest 123(5):1964–1975. doi:10.1172/JCI66387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maison S, Liberman LD, Liberman MC (2016) Type II cochlear ganglion neurons do not drive the olivocochlear reflex: re-examination of the cochlear phenotype in peripherin knock-out mice. eNeuro 3(4). pii: ENEURO.0207-16.2016. doi:10.1523/ENEURO.0207-16.2016

  • Mann DL (2003) Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65:81–101. doi:10.1146/annurev.physiol.65.092101.142249

    Article  CAS  PubMed  Google Scholar 

  • Marszalek JR, Williamson TL, Lee MK, Xu Z, Hoffman PN, Becher MW, TO C, Cleveland DW (1996) Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J Cell Biol 135(3):711–724

    Article  CAS  PubMed  Google Scholar 

  • Mathew J, Loranger A, Gilbert S, Faure R, Marceau N (2013) Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp Cell Res 319(4):474–486. doi:10.1016/j.yexcr.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Amagai M (2015) Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol 27(6):269–280. doi:10.1093/intimm/dxv013

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M (2013) Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem 288(50):35626–35635. doi:10.1074/jbc.M113.514737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavroidis M, Capetanaki Y (2002) Extensive induction of important mediators of fibrosis and dystrophic calcification in desmin-deficient cardiomyopathy. Am J Pathol 160(3):943–952. doi:10.1016/s0002-9440(10)64916-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavroidis M, Panagopoulou P, Kostavasili I, Weisleder N, Capetanaki Y (2008) A missense mutation in desmin tail domain linked to human dilated cardiomyopathy promotes cleavage of the head domain and abolishes its Z-disc localization. FASEB J 22(9):3318–3327. doi:10.1096/fj.07-088724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavroidis M, Davos CH, Psarras S, Varela ANCA, Katsimpoulas M, Kostavasili I, Maasch C, Vater A, van Tintelen JP, Capetanaki Y (2015) Complement system modulation as a target for treatment of arrhythmogenic cardiomyopathy. Basic Res Cardiol 110(3):27. doi:10.1007/s00395-015-0485-6

    Article  PubMed  CAS  Google Scholar 

  • McAleer MA, Pohler E, Smith FJ, Wilson NJ, Cole C, MacGowan S, Koetsier JL, Godsel LM, Harmon RM, Gruber R, Crumrine D, Elias PM, McDermott M, Butler K, Broderick A, Sarig O, Sprecher E, Green KJ, McLean WH, Irvine AD (2015) Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J Allergy Clin Immunol 136(5):1268–1276. doi:10.1016/j.jaci.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, Zhang CL, Pearce RA, Chiu SY, Messing A (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A 93(13):6361–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCullagh KJ, Edwards B, Kemp MW, Giles LC, Burgess M, Davies KE (2008) Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse. Mamm Genome 19(5):339–351. doi:10.1007/s00335-008-9120-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan KM, Tong X, Colucci-Guyon E, Langa F, Babinet C, Coulombe PA (2002) Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev 16(11):1412–1422. doi:10.1101/gad.979502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean WH, Hansen CD, Eliason MJ, Smith FJ (2011) The phenotypic and molecular genetic features of pachyonychia congenita. J Invest Dermatol 131(5):1015–1017. doi:10.1038/jid.2011.59

    Article  CAS  PubMed  Google Scholar 

  • Meier J, Couillard-Despres S, Jacomy H, Gravel C, Julien JP (1999) Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice. J Neuropathol Exp Neurol 58(10):1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, Brenner M (1998) Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152(2):391–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millecamps S, Gowing G, Corti O, Mallet J, Julien JP (2007) Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J Neurosci 27(18):4947–4956. doi:10.1523/jneurosci.5299-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134(5):1255–1270

    Article  CAS  PubMed  Google Scholar 

  • Milner DJ, Taffet GE, Wang X, Pham T, Tamura T, Hartley C, Gerdes AM, Capetanaki Y (1999) The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 31(11):2063–2076

    Article  CAS  PubMed  Google Scholar 

  • Mizuno Y, Guyon JR, Okamoto K, Kunkel LM (2009) Expression of synemin in the mouse spinal cord. Muscle Nerve 39(5):634–641. doi:10.1002/mus.21221

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohseni P, Sung HK, Murphy AJ, Laliberte CL, Pallari HM, Henkelman M, Georgiou J, Xie G, Quaggin SE, Thorner PS, Eriksson JE, Nagy A (2011) Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J Neurosci 31(32):11547–11552. doi:10.1523/JNEUROSCI.4396-10.2011

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Kuhn C, Moll R (1995) Cytokeratin 20 is a general marker of cutaneous Merkel cells while certain neuronal proteins are absent. J Invest Dermatol 104(6):910–915

    Article  CAS  PubMed  Google Scholar 

  • Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129(6):705–733. doi:10.1007/s00418-008-0435-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor-Vaknin N, Legendre M, Yu Y, Serezani CH, Garg SK, Jatzek A, Swanson MD, Gonzalez-Hernandez MJ, Teitz-Tennenbaum S, Punturieri A, Engleberg NC, Banerjee R, Peters-Golden M, Kao JY, Markovitz DM (2013) Murine colitis is mediated by vimentin. Sci Rep 3:1045. doi:10.1038/srep01045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller M, Bhattacharya SS, Moore T, Prescott Q, Wedig T, Herrmann H, Magin TM (2009) Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum Mol Genet 18(6):1052–1057. doi:10.1093/hmg/ddn440

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. doi:10.1038/47513

    Article  CAS  PubMed  Google Scholar 

  • Nakamichi I, Toivola DM, Strnad P, Michie SA, Oshima RG, Baribault H, Omary MB (2005) Keratin 8 overexpression promotes mouse Mallory body formation. J Cell Biol 171(6):931–937. doi:10.1083/jcb.200507093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9(10):679–691. doi:10.1038/nri2622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen MD, Lariviere RC, Julien JP (2001) Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30(1):135–147

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MD, Shu T, Sanada K, Lariviere RC, Tseng HC, Park SK, Julien JP, Tsai LH (2004) A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons. Nat Cell Biol 6(7):595–608. doi:10.1038/ncb1139

    Article  CAS  PubMed  Google Scholar 

  • Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8(2):156–162. doi:10.1038/ncb1355

    Article  CAS  PubMed  Google Scholar 

  • O’Neill A, Williams MW, Resneck WG, Milner DJ, Capetanaki Y, Bloch RJ (2002) Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with the membrane skeleton at costameres. Mol Biol Cell 13(7):2347–2359. doi:10.1091/mbc.01-12-0576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Odaka C, Loranger A, Takizawa K, Ouellet M, Tremblay MJ, Murata S, Inoko A, Inagaki M, Marceau N (2013) Keratin 8 is required for the maintenance of architectural structure in thymus epithelium. PLoS One 8(9):e75101. doi:10.1371/journal.pone.0075101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara O, Gahara Y, Miyake T, Teraoka H, Kitamura T (1993) Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J Cell Biol 121(2):387–395

    Article  CAS  PubMed  Google Scholar 

  • Oji V, Eckl KM, Aufenvenne K, Natebus M, Tarinski T, Ackermann K, Seller N, Metze D, Nurnberg G, Folster-Holst R, Schafer-Korting M, Hausser I, Traupe H, Hennies HC (2010) Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am J Hum Genet 87(2):274–281. doi:10.1016/j.ajhg.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omary MB, Ku NO, Strnad P, Hanada S (2009) Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 119(7):1794–1805. doi:10.1172/JCI37762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouellet T, Lussier M, Babai F, Lapointe L, Royal A (1990) Differential expression of the epidermal K1 and K10 keratin genes during mouse embryo development. Biochem Cell Biol 68(2):448–453

    Article  CAS  PubMed  Google Scholar 

  • Paladini RD, Coulombe PA (1998) Directed expression of keratin 16 to the progenitor basal cells of transgenic mouse skin delays skin maturation. J Cell Biol 142(4):1035–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446. doi:10.1038/ng1767

    Article  CAS  PubMed  Google Scholar 

  • Panagopoulou P, Davos CH, Milner DJ, Varela E, Cameron J, Mann DL, Capetanaki Y (2008) Desmin mediates TNF-alpha-induced aggregate formation and intercalated disk reorganization in heart failure. J Cell Biol 181(5):761–775. doi:10.1083/jcb.200710049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papathanasiou S, Rickelt S, Soriano ME, Schips TG, Maier HJ, Davos CH, Varela A, Kaklamanis L, Mann DL, Capetanaki Y (2015) Tumor necrosis factor-alpha confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med 21(9):1076–1084. doi:10.1038/nm.3925

    Article  CAS  PubMed  Google Scholar 

  • Paramio JM, Segrelles C, Ruiz S, Jorcano JL (2001) Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol Cell Biol 21(21):7449–7459. doi:10.1128/MCB.21.21.7449-7459.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, Walton N, Lahn BT (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28(12):2162–2171. doi:10.1002/stem.541

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434. doi:10.1002/glia.20207

    Article  PubMed  Google Scholar 

  • Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204(4):428–437. doi:10.1002/path.1645

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14(8):1590–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisen J (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145(3):503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38. doi:10.1016/j.neulet.2013.12.071

    Article  CAS  PubMed  Google Scholar 

  • Peter A, Stick R (2015) Evolutionary aspects in intermediate filament proteins. Curr Opin Cell Biol 32:48–55. doi:10.1016/j.ceb.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  • Peters B, Kirfel J, Bussow H, Vidal M, Magin TM (2001) Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol Biol Cell 12(6):1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potten CS, Morris RJ (1988) Epithelial stem cells in vivo. J Cell Sci Suppl 10:45–62

    Article  CAS  PubMed  Google Scholar 

  • Presland RB, Coulombe PA, Eckert RL, Mao-Qiang M, Feingold KR, Elias PM (2004) Barrier function in transgenic mice overexpressing K16, involucrin, and filaggrin in the suprabasal epidermis. J Invest Dermatol 123(3):603–606. doi:10.1111/j.0022-202X.2004.23226.x

    Article  CAS  PubMed  Google Scholar 

  • Prudner BC, Roy PS, Damron DS, Russell MA (2014) alpha-Synemin localizes to the M-band of the sarcomere through interaction with the M10 region of titin. FEBS Lett 588(24):4625–4630. doi:10.1016/j.febslet.2014.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralston E, Lu Z, Biscocho N, Soumaka E, Mavroidis M, Prats C, Lomo T, Capetanaki Y, Ploug T (2006) Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J Cell Physiol 209(3):874–882. doi:10.1002/jcp.20780

    Article  CAS  PubMed  Google Scholar 

  • Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, Lazar J, Stiefel S, Hersch N, Schnakenberg U, Magin TM, Leube RE, Merkel R, Hoffmann B (2013) Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci U S A 110(46):18513–18518. doi:10.1073/pnas.1313491110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S, Lee VM, Andreadis A, Julien JP, Bridgman PC, Nixon RA (2002a) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159(2):279–290. doi:10.1083/jcb.200205062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A, Mattina S, Ward CM, Calcutt NA, Uchiyama Y, Nixon RA, Cleveland DW (2002b) Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 158(4):681–693. doi:10.1083/jcb.200202037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Campbell J, Yuan A, Kumar A, Gotow T, Uchiyama Y, Nixon RA (2003) The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol 163(5):1021–1031. doi:10.1083/jcb.200308076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Mohan PS, Kumar A, Yuan A, Montagna L, Campbell J, Veeranna EEM, Julien JP, Nixon RA (2011) The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS One 6(2):e17087. doi:10.1371/journal.pone.0017087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt J, Magin TM (2002) Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice. J Cell Sci 115(Pt 13):2639–2650

    CAS  PubMed  Google Scholar 

  • Reichelt J, Bauer C, Porter R, Lane E, Magin V (1997) Out of balance: consequences of a partial keratin 10 knockout. J Cell Sci 110(Pt 18):2175–2186

    CAS  PubMed  Google Scholar 

  • Reichelt J, Doering T, Schnetz E, Fartasch M, Sandhoff K, Magin AM (1999) Normal ultrastructure, but altered stratum corneum lipid and protein composition in a mouse model for epidermolytic hyperkeratosis. J Invest Dermatol 113(3):329–334. doi:10.1046/j.1523-1747.1999.00702.x

    Article  CAS  PubMed  Google Scholar 

  • Reichelt J, Bussow H, Grund C, Magin TM (2001) Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol Biol Cell 12(6):1557–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt J, Furstenberger G, Magin TM (2004) Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J Invest Dermatol 123(5):973–981. doi:10.1111/j.0022-202X.2004.23426.x

    Article  CAS  PubMed  Google Scholar 

  • Roth W, Kumar V, Beer HD, Richter M, Wohlenberg C, Reuter U, Thiering S, Staratschek-Jox A, Hofmann A, Kreusch F, Schultze JL, Vogl T, Roth J, Reichelt J, Hausser I, Magin TM (2012) Keratin 1 maintains skin integrity and participates in an inflammatory network in skin through interleukin-18. J Cell Sci 125(Pt 22):5269–5279. doi:10.1242/jcs.116574

    Article  CAS  PubMed  Google Scholar 

  • Rouleau GA, Clark AW, Rooke K, Pramatarova A, Krizus A, Suchowersky O, Julien JP, Figlewicz D (1996) SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39(1):128–131. doi:10.1002/ana.410390119

    Article  CAS  PubMed  Google Scholar 

  • Sahlgren CM, Mikhailov A, Hellman J, Chou YH, Lendahl U, Goldman RD, Eriksson JE (2001) Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem 276(19):16456–16463. doi:10.1074/jbc.M009669200

    Article  CAS  PubMed  Google Scholar 

  • Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, Pant HC, Eriksson JE (2003) Cdk5 regulates the organization of nestin and its association with p35. Mol Cell Biol 23(14):5090–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi T, Okada M, Kitamura T, Kawasaki K (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153(1):65–68

    Article  CAS  PubMed  Google Scholar 

  • Samuelov L, Sarig O, Harmon RM, Rapaport D, Ishida-Yamamoto A, Isakov O, Koetsier JL, Gat A, Goldberg I, Bergman R, Spiegel R, Eytan O, Geller S, Peleg S, Shomron N, Goh CS, Wilson NJ, Smith FJ, Pohler E, Simpson MA, McLean WH, Irvine AD, Horowitz M, McGrath JA, Green KJ, Sprecher E (2013) Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat Genet 45(10):1244–1248. doi:10.1038/ng.2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandilands A, Prescott AR, Wegener A, Zoltoski RK, Hutcheson AM, Masaki S, Kuszak JR, Quinlan RA (2003) Knockout of the intermediate filament protein CP49 destabilises the lens fibre cell cytoskeleton and decreases lens optical quality, but does not induce cataract. Exp Eye Res 76(3):385–391

    Article  CAS  PubMed  Google Scholar 

  • Sandilands A, Wang X, Hutcheson AM, James J, Prescott AR, Wegener A, Pekny M, Gong X, Quinlan RA (2004) Bfsp2 mutation found in mouse 129 strains causes the loss of CP49’ and induces vimentin-dependent changes in the lens fibre cell cytoskeleton. Exp Eye Res 78(4):875–889. doi:10.1016/j.exer.2003.09.028

  • Sandilands A, Smith FJ, Lunny DP, Campbell LE, Davidson KM, MacCallum SF, Corden LD, Christie L, Fleming S, Lane EB, McLean WH (2013) Generation and characterisation of keratin 7 (K7) knockout mice. PLoS One 8(5):e64404. doi:10.1371/journal.pone.0064404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos M, Paramio JM, Bravo A, Ramirez A, Jorcano JL (2002) The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J Biol Chem 277(21):19122–19130. doi:10.1074/jbc.M201001200

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Gotow T, Shiozaki M, Sakaue F, Saito T, Julien JP, Uchiyama Y, Hisanaga S (2006) Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum Mol Genet 15(6):943–952. doi:10.1093/hmg/ddl011

    Article  CAS  PubMed  Google Scholar 

  • Schwarz N, Windoffer R, Magin TM, Leube RE (2015) Dissection of keratin network formation, turnover and reorganization in living murine embryos. Sci Rep 5:9007. doi:10.1038/srep09007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seltmann K, Fritsch AW, Kas JA, Magin TM (2013a) Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A 110(46):18507–18512. doi:10.1073/pnas.1310493110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seltmann K, Roth W, Kroger C, Loschke F, Lederer M, Huttelmaier S, Magin TM (2013b) Keratins mediate localization of hemidesmosomes and repress cell motility. J Invest Dermatol 133(1):181–190. doi:10.1038/jid.2012.256

    Article  CAS  PubMed  Google Scholar 

  • Shah JV, Flanagan LA, Janmey PA, Leterrier JF (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 11(10):3495–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SB, Love JM, O’Neill A, Lovering RM, Bloch RJ (2012) Influences of desmin and keratin 19 on passive biomechanical properties of mouse skeletal muscle. J Biomed Biotechnol 2012:704061. doi:10.1155/2012/704061

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea TB, Lee S (2011) Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses. Cytoskelet (Hoboken) 68(11):589–595. doi:10.1002/cm.20535

    Article  CAS  Google Scholar 

  • Shrikant P, Benveniste EN (1996) The central nervous system as an immunocompetent organ: role of glial cells in antigen presentation. J Immunol 157(5):1819–1822

    CAS  PubMed  Google Scholar 

  • Sidhu GS, Chandra P, Cassai ND (2005) Merkel cells, normal and neoplastic: an update. Ultrastruct Pathol 29(3–4):287–294. doi:10.1080/01913120590951284

    Article  PubMed  Google Scholar 

  • Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313(10):2098–2109. doi:10.1016/j.yexcr.2007.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson CL, Patel DM, Green KJ (2011) Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12(9):565–580. doi:10.1038/nrm3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FJ, Porter RM, Corden LD, Lunny DP, Lane EB, McLean WH (2002) Cloning of human, murine, and marsupial keratin 7 and a survey of K7 expression in the mouse. Biochem Biophys Res Commun 297(4):818–827

    Article  CAS  PubMed  Google Scholar 

  • Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S, Arseculeratne G, Munro CS, Sergeant A, O’Regan G, Bale SJ, Compton JG, DiGiovanna JJ, Presland RB, Fleckman P, McLean WH (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38(3):337–342. doi:10.1038/ng1743

    Article  CAS  PubMed  Google Scholar 

  • Snider NT, Omary MB (2014) Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15(3):163–177. doi:10.1038/nrm3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snider NT, Weerasinghe SV, Iniguez-Lluhi JA, Herrmann H, Omary MB (2011) Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J Biol Chem 286(3):2273–2284. doi:10.1074/jbc.M110.171314

    Article  CAS  PubMed  Google Scholar 

  • Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA (2009) Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest 119(7):1837–1848. doi:10.1172/JCI38277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone MR, O’Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, Toivola DM, Ursitti JA, Omary MB, Bloch RJ (2007) Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 120(Pt 22):3999–4008. doi:10.1242/jcs.009241

    Article  CAS  PubMed  Google Scholar 

  • Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J (2013) Broad spectrum of hepatocyte inclusions in humans, animals, and experimental models. Compr Physiol 3(4):1393–1436. doi:10.1002/cphy.c120032

    Article  PubMed  Google Scholar 

  • Szeverenyi I, Cassidy AJ, Chung CW, Lee BT, Common JE, Ogg SC, Chen H, Sim SY, Goh WL, Ng KW, Simpson JA, Chee LL, Eng GH, Li B, Lunny DP, Chuon D, Venkatesh A, Khoo KH, McLean WH, Lim YP, Lane EB (2008) The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 29(3):351–360. doi:10.1002/humu.20652

    Article  CAS  PubMed  Google Scholar 

  • Tamai Y, Ishikawa T, Bosl MR, Mori M, Nozaki M, Baribault H, Oshima RG, Taketo MM (2000) Cytokeratins 8 and 19 in the mouse placental development. J Cell Biol 151(3):563–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Goto H, Inoko A, Makihara H, Enomoto A, Horimoto K, Matsuyama M, Kurita K, Izawa I, Inagaki M (2015) Cytokinetic failure-induced tetraploidy develops into aneuploidy, triggering skin aging in phosphovimentin-deficient mice. J Biol Chem 290(21):12984–12998. doi:10.1074/jbc.M114.633891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao GZ, Looi KS, Toivola DM, Strnad P, Zhou Q, Liao J, Wei Y, Habtezion A, Omary MB (2009) Keratins modulate the shape and function of hepatocyte mitochondria: a mechanism for protection from apoptosis. J Cell Sci 122(Pt 21):3851–3855. doi:10.1242/jcs.051862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toivola DM, Omary MB, Ku NO, Peltola O, Baribault H, Eriksson JE (1998) Protein phosphatase inhibition in normal and keratin 8/18 assembly-incompetent mouse strains supports a functional role of keratin intermediate filaments in preserving hepatocyte integrity. Hepatology 28(1):116–128. doi:10.1002/hep.510280117

    Article  CAS  PubMed  Google Scholar 

  • Toivola DM, Nieminen MI, Hesse M, He T, Baribault H, Magin TM, Omary MB, Eriksson JE (2001) Disturbances in hepatic cell-cycle regulation in mice with assembly-deficient keratins 8/18. Hepatology 34(6):1174–1183. doi:10.1053/jhep.2001.29374

    Article  CAS  PubMed  Google Scholar 

  • Toivola DM, Krishnan S, Binder HJ, Singh SK, Omary MB (2004) Keratins modulate colonocyte electrolyte transport via protein mistargeting. J Cell Biol 164(6):911–921. doi:10.1083/jcb.200308103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toivola DM, Nakamichi I, Strnad P, Michie SA, Ghori N, Harada M, Zeh K, Oshima RG, Baribault H, Omary MB (2008) Keratin overexpression levels correlate with the extent of spontaneous pancreatic injury. Am J Pathol 172(4):882–892. doi:10.2353/ajpath.2008.070830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toivola DM, Habtezion A, Misiorek JO, Zhang L, Nystrom JH, Sharpe O, Robinson WH, Kwan R, Omary MB (2015) Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice. FASEB J 29(12):5081–5089. doi:10.1096/fj.14-269795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Coulombe PA (2006) Keratin 17 modulates hair follicle cycling in a TNFalpha-dependent fashion. Genes Dev 20(10):1353–1364. doi:10.1101/gad.1387406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuruta D, Hashimoto T, Hamill KJ, Jones JC (2011) Hemidesmosomes and focal contact proteins: functions and cross-talk in keratinocytes, bullous diseases and wound healing. J Dermatol Sci 62(1):1–7. doi:10.1016/j.jdermsci.2011.01.005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363. doi:10.1126/science.1092436

    Article  CAS  PubMed  Google Scholar 

  • Vardjan N, Gabrijel M, Potokar M, Svajger U, Kreft M, Jeras M, de Pablo Y, Faiz M, Pekny M, Zorec R (2012) IFN-gamma-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. J Neuroinflammation 9:144. doi:10.1186/1742-2094-9-144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayaraj P, Kroger C, Reuter U, Windoffer R, Leube RE, Magin TM (2009) Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J Cell Biol 187(2):175–184. doi:10.1083/jcb.200906094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayaraj P, Kroeger C, Reuter U, Hartmann D, Magin TM (2010) Keratins regulate yolk sac hematopoiesis and vasculogenesis through reduced BMP-4 signaling. Eur J Cell Biol 89(4):299–306. doi:10.1016/j.ejcb.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  • Wallace L, Roberts-Thompson L, Reichelt J (2012) Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity. J Cell Sci 125(Pt 7):1750–1758. doi:10.1242/jcs.097139

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ho CL, Sun D, Liem RK, Brown A (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2(3):137–141. doi:10.1038/35004008

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Lang HY, Yuan J, Wang J, Wang R, Zhang XH, Zhang J, Zhao T, Li YR, Liu JY, Zeng LH, Guo GZ (2013) Overexpression of keratin 17 is associated with poor prognosis in epithelial ovarian cancer. Tumour Biol 34(3):1685–1689. doi:10.1007/s13277-013-0703-5

    Article  CAS  PubMed  Google Scholar 

  • Watt FM (1998) Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans R Soc Lond B Biol Sci 353(1370):831–837. doi:10.1098/rstb.1998.0247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weerasinghe SV, Ku NO, Altshuler PJ, Kwan R, Omary MB (2014) Mutation of caspase-digestion sites in keratin 18 interferes with filament reorganization, and predisposes to hepatocyte necrosis and loss of membrane integrity. J Cell Sci 127(Pt 7):1464–1475. doi:10.1242/jcs.138479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisleder N, Soumaka E, Abbasi S, Taegtmeyer H, Capetanaki Y (2004a) Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. J Mol Cell Cardiol 36(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Weisleder N, Taffet GE, Capetanaki Y (2004b) Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc Natl Acad Sci U S A 101(3):769–774. doi:10.1073/pnas.0303202101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widestrand A, Faijerson J, Wilhelmsson U, Smith PL, Li L, Sihlbom C, Eriksson PS, Pekny M (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells 25(10):2619–2627. doi:10.1634/stemcells.2007-0122

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmsson U, Faiz M, de Pablo Y, Sjoqvist M, Andersson D, Widestrand A, Potokar M, Stenovec M, Smith PL, Shinjyo N, Pekny T, Zorec R, Stahlberg A, Pekna M, Sahlgren C, Pekny M (2012) Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway. Stem Cells 30(10):2320–2329. doi:10.1002/stem.1196

    Article  CAS  PubMed  Google Scholar 

  • Windoffer R, Beil M, Magin TM, Leube RE (2011) Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J Cell Biol 194(5):669–678. doi:10.1083/jcb.201008095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter L, Wiche G (2013) The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol 125(1):77–93. doi:10.1007/s00401-012-1026-0

    Article  CAS  PubMed  Google Scholar 

  • Winter L, Abrahamsberg C, Wiche G (2008) Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J Cell Biol 181(6):903–911. doi:10.1083/jcb.200710151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter L, Kuznetsov AV, Grimm M, Zeold A, Fischer I, Wiche G (2015) Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum Mol Genet 24(16):4530–4544. doi:10.1093/hmg/ddv184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcik SM, Bundman DS, Roop DR (2000) Delayed wound healing in keratin 6a knockout mice. Mol Cell Biol 20(14):5248–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong P, Coulombe PA (2003) Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J Cell Biol 163(2):327–337. doi:10.1083/jcb.200305032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo WM, Goncharov A, Jin Y, Chisholm AD (2004) Intermediate filaments are required for C. elegans epidermal elongation. Dev Biol 267(1):216–229. doi:10.1016/j.ydbio.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Marszalek JR, Lee MK, Wong PC, Folmer J, TO C, Hsieh ST, Griffin JW, Cleveland DW (1996) Subunit composition of neurofilaments specifies axonal diameter. J Cell Biol 133(5):1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Goto H, Yokoyama T, Sillje H, Hanisch A, Uldschmid A, Takai Y, Oguri T, Nigg EA, Inagaki M (2005) Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol 171(3):431–436. doi:10.1083/jcb.200504091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Dowling J, Yu QC, Kouklis P, Cleveland DW, Fuchs E (1996) An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 86(4):655–665

    Article  CAS  PubMed  Google Scholar 

  • Yasui Y, Amano M, Nagata K, Inagaki N, Nakamura H, Saya H, Kaibuchi K, Inagaki M (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol 143(5):1249–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui Y, Goto H, Matsui S, Manser E, Lim L, Nagata K, Inagaki M (2001) Protein kinases required for segregation of vimentin filaments in mitotic process. Oncogene 20(23):2868–2876. doi:10.1038/sj.onc.1204407

    Article  CAS  PubMed  Google Scholar 

  • Yatsunami J, Fujiki H, Suganuma M, Yoshizawa S, Eriksson JE, Olson MO, Goldman RD (1991) Vimentin is hyperphosphorylated in primary human fibroblasts treated with okadaic acid. Biochem Biophys Res Commun 177(3):1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Yin X, TO C, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18(6):1953–1962

    CAS  PubMed  Google Scholar 

  • Yuan A, Nixon RA, Rao MV (2006) Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo. Neurosci Lett 393(2–3):264–268. doi:10.1016/j.neulet.2005.10.029

    Article  CAS  PubMed  Google Scholar 

  • Yuan A, Sasaki T, Rao MV, Kumar A, Kanumuri V, Dunlop DS, Liem RK, Nixon RA (2009) Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J Neurosci 29(36):11316–11329. doi:10.1523/jneurosci.1942-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan A, Sershen H, Veeranna BBS, Kumar A, Hashim A, Berg M, Lee JH, Sato Y, Rao MV, Mohan PS, Dyakin V, Julien JP, Lee VM, Nixon RA (2015) Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol Psychiatry 20(8):986–994. doi:10.1038/mp.2015.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatloukal K, Stumptner C, Lehner M, Denk H, Baribault H, Eshkind LG, Franke WW (2000) Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. Am J Pathol 156(4):1263–1274. doi:10.1016/S0002-9440(10)64997-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB (2007) From Mallory to Mallory-Denk bodies: what, how and why? Exp Cell Res 313(10):2033–2049. doi:10.1016/j.yexcr.2007.04.024

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Bang ML, Gokhin DS, Lu Y, Cui L, Li X, Gu Y, Dalton ND, Scimia MC, Peterson KL, Lieber RL, Chen J (2008) Syncoilin is required for generating maximum isometric stress in skeletal muscle but dispensable for muscle cytoarchitecture. Am J Physiol Cell Physiol 294(5):C1175–C1182. doi:10.1152/ajpcell.00049.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Landmann F, Zahreddine H, Rodriguez D, Koch M, Labouesse M (2011) A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471(7336):99–103. doi:10.1038/nature09765

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Toivola DM, Feng N, Greenberg HB, Franke WW, Omary MB (2003) Keratin 20 helps maintain intermediate filament organization in intestinal epithelia. Mol Biol Cell 14(7):2959–2971. doi:10.1091/mbc.E03-02-0059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Couillard-Despres S, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148(1):299–316. doi:10.1006/exnr.1997.6654

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Lindenbaum M, Levavasseur F, Jacomy H, Julien JP (1998) Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta,beta’-iminodipropionitrile. J Cell Biol 143(1):183–193

    Google Scholar 

Download references

Acknowledgments

Work in the Magin lab is supported by the DFG (MA1316-15, MA1316-17, MA1316-19, MA1316-21, INST 268/230-1). The authors declare no competing financial interests. For the figure, some illustrations were taken from somersault18:24 website (license: Attribution-NonCommercial-ShareAlike 4.0 International, CC BY-NC-SA 4.0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamal-Eddine Bouameur or Thomas M. Magin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bouameur, JE., Magin, T.M. (2017). Lessons from Animal Models of Cytoplasmic Intermediate Filament Proteins. In: Parry, D., Squire, J. (eds) Fibrous Proteins: Structures and Mechanisms. Subcellular Biochemistry, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-49674-0_7

Download citation

Publish with us

Policies and ethics