Skip to main content

Properties of Engineered and Fabricated Silks

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 82))

Abstract

Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted silk types in a broad variety of applications. Silk occurs in several morphologies, such as sticky glue or in the shape of fibers and can, depending on the application by the respective animal, dissipate a high mechanical energy, resist heat and radiation, maintain functionality when submerged in water and withstand microbial settling. Hence, it’s unsurprising that silk piqued human interest a long time ago, which catalyzed the domestication of silkworms for the production of silk to be used in textiles. Recently, scientific progress has enabled the development of analytic tools to gain profound insights into the characteristics of silk proteins. Based on these investigations, the biotechnological production of artificial and engineered silk has been accomplished, which allows the production of a sufficient amount of silk materials for several industrial applications. This chapter provides a review on the biotechnological production of various silk proteins from different species, as well as on the processing techniques to fabricate application-oriented material morphologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addison JB, Ashton NN, Weber WS, Stewart RJ, Holland GP, Yarger JL (2013) beta-Sheet nanocrystalline domains formed from phosphorylated serine-rich motifs in caddisfly larval silk: a solid state NMR and XRD study. Biomacromolecules 14:1140–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addison JB, Weber WS, Mou Q, Ashton NN, Stewart RJ, Holland GP, Yarger JL (2014) Reversible assembly of beta-sheet nanocrystals within caddisfly silk. Biomacromolecules 15:1269–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrianos SL, Teule F, Hinman MB, Jones JA, Weber WS, Yarger JL, Lewis RV (2013) Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers. Biomacromolecules 14:1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agapov II, Pustovalova OL, Moisenovich MM, Bogush VG, Sokolova OS, Sevastyanov VI, Debabov VG, Kirpichnikov MP (2009) Three-dimensional scaffold made from recombinant spider Silk protein for tissue engineering. Dokl Biochem Biophys 426:127–130

    Article  CAS  PubMed  Google Scholar 

  • Albertson AE, Teule F, Weber W, Yarger JL, Lewis RV (2014) Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers. J Mech Behav Biomed Mater 29:225–234

    Article  CAS  PubMed  Google Scholar 

  • Altman GH, Diaz F, JAKUBA C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  • An B, Hinman MB, Holland GP, Yarger JL, Lewis RV (2011) Inducing beta-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules 12:2375–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP, Cappello J, Martin DC (1994) Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered Escherichia coli bacteria. Biopolymers 34:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49:31–38

    Article  CAS  PubMed  Google Scholar 

  • Ashton NN, Stewart RJ (2015) Self-recovering caddisfly silk: energy dissipating, Ca(2+)-dependent, double dynamic network fibers. Soft Matter 11:1667–1676

    Article  CAS  PubMed  Google Scholar 

  • Ashton NN, Roe DR, Weiss RB, Cheatham TE, Stewart RJ (2013) Self-tensioning aquatic caddisfly silk: Ca2+−dependent structure, strength, and load cycle hysteresis. Biomacromolecules 14:3668–3681

    Article  CAS  PubMed  Google Scholar 

  • Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465:236–238

    Article  CAS  PubMed  Google Scholar 

  • Atkins EDT (1967) A four-strand coiled coil model for some insect fibrous proteins. J Mol Biol 24:139–141

    Article  CAS  Google Scholar 

  • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2:e514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai X, Sakaguchi M, Yamaguchi Y, Ishihara S, Tsukada M, Hirabayashi K, Ohkawa K, Nomura T, Arai R (2015) Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata. Biochem Biophys Res Commun 464:814–819

    Article  CAS  PubMed  Google Scholar 

  • Barr LA, Fahnestock SR, Yang J (2004) Production and purification of recombinant DP1B silk-like protein in plants. Mol Breed 13:345–356

    Article  CAS  Google Scholar 

  • Bauer F, Bertinetti L, Masic A, Scheibel T (2012) Dependence of mechanical properties of lacewing egg stalks on relative humidity. Biomacromolecules 13:3730–3735

    Article  CAS  PubMed  Google Scholar 

  • Bauer F, Scheibel T (2012) Artificial egg stalks made of a recombinantly produced lacewing silk protein. Angew Chem 51:6521–6524

    Article  CAS  Google Scholar 

  • Bauer F, Wohlrab S, Scheibel T (2013) Controllable cell adhesion, growth and orientation on layered silk protein films. Biomed Sci 1:1244–1249

    CAS  Google Scholar 

  • Becker N, Oroudjev E, Mutz S, Cleveland JP, Hansma PK, Hayashi CY, Makarov DE, Hansma HG (2003) Molecular nanosprings in spider capture-silk threads. Nat Mater 2:278–283

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj G, Webster T (2015) Coating polyurethane surfaces by electrostatic charging followed by dip coating/electrophoretic deposition. FASEB J:29

    Google Scholar 

  • Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32:5773–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bini E, Knight DP, Kaplan DL (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol 335:27–40

    Article  CAS  PubMed  Google Scholar 

  • Bini E, Foo CWP, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7:3139–3145

    Article  CAS  PubMed  Google Scholar 

  • Blackledge TA, Summers AP, Hayashi CY (2005) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology 108:41–46

    Article  PubMed  Google Scholar 

  • Blüm C, Scheibel T (2012) Control of drug loading and release properties of spider silk sub-microparticles. Bio Nano Science 2:67–74

    Google Scholar 

  • Blum C, Nichtl A, Scheibel T (2014) Spider silk capsules as protective reaction containers for enzymes. Adv Funct Mater 24:763–768

    Article  CAS  Google Scholar 

  • Borkner CB, Elsner MB, Scheibel T (2014) Coatings and films made of silk proteins. ACS Appl Mater Interfaces 6:15611–15625

    Article  CAS  PubMed  Google Scholar 

  • Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir : the ACS journal of surfaces and colloids 28:2200–2205

    Article  CAS  Google Scholar 

  • Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407

    Article  CAS  Google Scholar 

  • Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, Schick C (2013) Beating the heat - fast scanning melts silk beta sheet crystals. Sci Rep 3

    Google Scholar 

  • Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332

    Article  PubMed  Google Scholar 

  • Challis RJ, Goodacre SL, Hewitt GM (2006) Evolution of spider silks: conservation and diversification of the C-terminus. Insect Mol Biol 15:45–56

    Article  CAS  PubMed  Google Scholar 

  • Chao PHG, Yodmuang S, Wang XQ, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 95B:84–90

    Article  CAS  Google Scholar 

  • Chen GP, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2:67–77

    Article  CAS  Google Scholar 

  • Chen X, Cai H, Ling S, Shao Z, Huang Y (2012) Conformation transition of Bombyx mori silk protein monitored by time-dependent fourier transform infrared (FT-IR) spectroscopy: effect of organic solvent. Appl Spectrosc 66:696–699

    Article  CAS  PubMed  Google Scholar 

  • Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267

    Article  CAS  PubMed  Google Scholar 

  • Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11:905–910

    Article  CAS  PubMed  Google Scholar 

  • Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  PubMed  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011). Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–9

    Google Scholar 

  • Dicko C, Knight D, Kenney JM, Vollrath F (2004) Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects. Biomacromolecules 5:2105–2115

    Article  CAS  PubMed  Google Scholar 

  • Dinerman AA, Cappello J, El-Sayed M, Hoag SW, Ghandehari H (2010) Influence of solute charge and hydrophobicity on partitioning and diffusion in a genetically engineered silk-elastin-like protein polymer hydrogel. Macromol Biosci 10:1235–1247

    Article  CAS  PubMed  Google Scholar 

  • Dinerman AA, Cappello J, Ghandehari H, Hoag SW (2002) Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials 23:4203–4210

    Article  CAS  PubMed  Google Scholar 

  • Doblhofer E, Scheibel T (2015) Engineering of recombinant spider silk proteins allows defined uptake and release of substances. J Pharm Sci 104:988–994

    Article  CAS  PubMed  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  • Du B, Wang JJ, Zhou ZM, Tang HB, LI XM, Liu YJ, Zhang QQ (2014) Synthesis of silk-based microcapsules by desolvation and hybridization. Chem Commun 50:4423–4426

    Article  CAS  Google Scholar 

  • Elia R, Michelson CD, Perera AL, Brunner TF, Harsono M, Leisk GG, Kugel G, Kaplan DL (2015) Electrodeposited silk coatings for bone implants. J Biomed Mater Res B Appl Biomater 103:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Engster MS (1976) Studies on silk secretion in the trichoptera (F. Limnephilidae). Cell Tissue Res 169:77–92

    Article  CAS  PubMed  Google Scholar 

  • Etienne O, Schneider A, Kluge JA, Bellemin-Laponnaz C, Polidori C, Leisk GG, Kaplan DL, Garlick JA, Egles C (2009) Soft tissue augmentation using silk gels: an in vitro and in vivo study. J Periodontol 80:1852–1858

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahnestock SR, Bedzyk LA (1997) Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 47:33–39

    Article  CAS  PubMed  Google Scholar 

  • Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garb JE, Hayashi CY (2005) Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc Natl Acad Sci U S A 102:11379–11384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5

    Google Scholar 

  • Geisler M, Pirzer T, Ackerschott C, Lud S, Garrido J, Scheibel T, Hugel T (2008) Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: an AFM-based single-molecule study. Langmuir 24:1350–1355

    Article  CAS  PubMed  Google Scholar 

  • Genov S, Riester D, Hirth T, Tovar G, Borchers K, Weber A (2011) Preparation and characterisation of dry thin native protein trehalose films on titanium-coated cyclo-olefin polymer (COP) foil generated by spin-coating/drying process and applied for protein transfer by Laser-Induced-Forward Transfer (LIFT). Chem Eng Process 50:558–564

    Article  CAS  Google Scholar 

  • Gill HS, Prausnitz MR (2007) Coating formulations for microneedles. Pharm Res 24:1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Gosline JM, Denny MW, Demont ME (1984) Spider silk as rubber. Nature 309:551–552

    Article  CAS  Google Scholar 

  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    CAS  PubMed  Google Scholar 

  • Gotoh Y, Tsukada M, Baba T, Minoura N (1997) Physical properties and structure of poly(ethylene glycol)-silk fibroin conjugate films. Polymer 38:487–490

    Article  CAS  Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46:5670–5703

    Article  CAS  Google Scholar 

  • Greish K, Frandsen J, Scharff S, Gustafson J, Cappello J, Li DQ, O’malley BW, Ghandehari H (2010) Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. J Gene Med 12:572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greving I, Cai MZ, Vollrath F, Schniepp HC (2012) Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. Biomacromolecules 13:676–682

    Article  CAS  PubMed  Google Scholar 

  • Grip S, Rising A, Nimmervoll H, Storckenfeldt E, Mcqueen-Mason SJ, Pouchkina-Stantcheva N, Vollrath F, Engsträm W, Fernandez-Arias A (2006) Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genomics Proteomics 3:83–87

    CAS  Google Scholar 

  • Guerette PA, Ginzinger DG, Weber BH, Gosline JM (1996) Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272:112–115

    Article  CAS  PubMed  Google Scholar 

  • Gustafson JA, Price RA, Greish K, Cappello J, Ghandehari H (2010) Silk-elastin-like hydrogel improves the safety of adenovirus-mediated gene-directed enzyme-prodrug therapy. Mol Pharm 7:1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–242

    Article  CAS  PubMed  Google Scholar 

  • Hagn F, Thamm C, Scheibel T, Kessler H (2011) pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk–implications for fiber formation. Angew Chem 50:310–313

    Article  CAS  Google Scholar 

  • Hajer J, Rehakova D (2003) Spinning activity of the spider Trogloneta granulum (Araneae, Mysmenidae): web, cocoon, cocoon handling behaviour, draglines and attachment discs. Zoology 106:223–231

    Article  PubMed  Google Scholar 

  • Hauptmann V, Weichert N, Menzel M, Knoch D, Paege N, Scheller J, Spohn U, Conrad U, Gils M (2013) Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res 22:369–377

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann V, Menzel M, Weichert N, Reimers K, Spohn U, Conrad U (2015) In planta production of ELPylated spidroin-based proteins results in non-cytotoxic biopolymers. BMC Biotechnol 15:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21:1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Heidebrecht A, Scheibel T (2013) Recombinant production of spider silk proteins. Adv Appl Microbiol 82:115–153

    Article  CAS  PubMed  Google Scholar 

  • Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, Scheibel T (2015) Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 27:2189–2194

    Article  CAS  PubMed  Google Scholar 

  • Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem 48:3584–3596

    Article  CAS  Google Scholar 

  • Heim M, Romer L, Scheibel T (2010) Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chem Soc Rev 39:156–164

    Article  CAS  PubMed  Google Scholar 

  • Hepburn HR, Chandler HD, Davidoff MR (1979) Extensometric properties of insect fibroins – green lacewing cross-beta, honeybee alpha-helical and greater waxmoth parallel-beta conformations. Insect Biochem 9:69–77

    Article  CAS  Google Scholar 

  • Hepburn HR, Kurstjens SP (1988) The combs of honeybees as composite materials. Apidologie 19:25–36

    Article  Google Scholar 

  • Hermanson KD, Harasim MB, Scheibel T, Bausch AR (2007a) Permeability of silk microcapsules made by the interfacial adsorption of protein. Phys Chem Chem Phys 9:6442–6446

    Article  CAS  PubMed  Google Scholar 

  • Hermanson KD, Huemmerich D, Scheibel T, Bausch AR (2007b) Engineered microcapsules fabricated from reconstituted spider silk. Adv Mater 19:1810

    Article  CAS  Google Scholar 

  • Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW (1996) 13C NMR of Nephila clavipes major ampullate silk gland. Biophys J 71:3442–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer M, Winter G, Myschik J (2012) Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials 33:1554–1562

    Article  CAS  PubMed  Google Scholar 

  • Holland GP, Jenkins JE, Creager MS, Lewis RV, Yarger JL (2008) Quantifying the fraction of glycine and alanine in beta-sheet and helical conformations in spider dragline silk using solid-state NMR. Chem Commun 43:5568–5570

    Article  CAS  Google Scholar 

  • Horinek D, Serr A, Geisler M, Pirzer T, Slotta U, Lud SQ, Garrido JA, Scheibel T, Hugel T, Netz RR (2008) Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces. Proc Natl Acad Sci U S A 105:2842–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46:3294–3303

    Article  CAS  PubMed  Google Scholar 

  • Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004a) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43:13604–13612

    Article  CAS  PubMed  Google Scholar 

  • Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004b) Novel assembly properties of recombinant spider dragline silk proteins. Curr Biol 14:2070–2074

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  CAS  PubMed  Google Scholar 

  • Jenkins JE, Creager MS, Butler EB, Lewis RV, Yarger JL, Holland GP (2010) Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Chem Commun 46:6714–6716

    Article  CAS  Google Scholar 

  • Johansson J, Nerelius C, Willander H, Presto J (2010) Conformational preferences of non-polar amino acid residues: an additional factor in amyloid formation. Biochem Biophys Res Commun 402:515–518

    Article  CAS  PubMed  Google Scholar 

  • Jones JA, Harris TI, Tucker CL, Berg KR, Christy SY, Day BA, Gaztambide DA, Needham NJ, Ruben AL, Oliveira PF, Decker RE, Lewis RV (2015) More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials. Biomacromolecules 16:1418–1425

    Article  CAS  PubMed  Google Scholar 

  • Jonker AM, Lowik DWPM, Van Hest JCM (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773

    Article  CAS  Google Scholar 

  • Junghans F, Morawietz M, Conrad U, Scheibel T, Heilmann A, Spohn U (2006) Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm. Appl Phys Mater Sci Process 82:253–260

    Article  CAS  Google Scholar 

  • Kameda T, Walker AA, Sutherland TD (2014) Evolution and application of coiled coil silks from insects. In: Asakura T, Miller T (eds) Biotechnology of silk. Springer, Dordrecht

    Google Scholar 

  • Kamenskiy AV, Dzenis YA, Kazmi SAJ, Pemberton MA, Pipinos II, Phillips NY, Herber K, Woodford T, Bowen RE, Lomneth CS, Mactaggart JN (2014) Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries. Biomech Model Mechanobiol 13:1341–1359

    Article  PubMed  Google Scholar 

  • Khalid A, Lodin R, Domachuk P, Tao H, Moreau JE, Kaplan DL, Omenetto FG, Gibson BC, Tomljenovic-HANIC S (2014) Synthesis and characterization of biocompatible nanodiamond-silk hybrid material. Biomed Opt Express 5:596–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinahan ME, Filippidi E, Koster S, Hu X, Evans HM, Pfohl T, Kaplan DL, Wong J (2011) Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12:1504–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammel A, Schwab M, Slotta U, Winter G, Scheibel T (2008) Processing conditions for the formation of spider silk microspheres. ChemSusChem 1:413–416

    Article  CAS  PubMed  Google Scholar 

  • Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31:4583–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammel A, Schwab M, Hofer M, Winter G, Scheibel T (2011) Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32:2233–2240

    Article  CAS  PubMed  Google Scholar 

  • Lane DD, Kaur S, Weerasakare GM, Stewart RJ (2015) Toughened hydrogels inspired by aquatic caddisworm silk. Soft Matter 11:6981–6990

    Article  CAS  PubMed  Google Scholar 

  • Lang G, Jokisch S, Scheibel T (2013) Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J Vis Exp 75:e50492

    Google Scholar 

  • Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476

    Article  CAS  PubMed  Google Scholar 

  • Leal-Egana A, Lang G, Mauerer C, Wickinghoff J, Weber M, Geimer S, Scheibel T (2012) Interactions of fibroblasts with different morphologies made of an engineered spider silk protein. Adv Eng Mater 14:B67–B75

    Article  CAS  Google Scholar 

  • Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr Purif 7:400–406

    Article  CAS  PubMed  Google Scholar 

  • Li JB, Mohwald H, An ZH, Lu G (2005) Molecular assembly of biomimetic microcapsules. Soft Matter 1:259–264

    Article  CAS  Google Scholar 

  • Li LH, Puhl S, Meinel L, Germershaus O (2014) Silk fibroin layer-by-layer microcapsules for localized gene delivery. Biomaterials 35:7929–7939

    Article  CAS  PubMed  Google Scholar 

  • Liebmann B, Huemmerich D, Scheibel T, Fehr M (2008) Formulation of poorly water-soluble substances using self-assembling spider silk protein. Colloids and Surfaces a-Physicochemical and Engineering Aspects 331:126–132

    CAS  Google Scholar 

  • Lintz ES, Scheibel TR (2013) Dragline, egg stalk and byssus: a comparison of outstanding protein fibers and their potential for developing new materials. Adv Funct Mater 23:4467–4482

    Article  CAS  Google Scholar 

  • Liu Y, Shao Z, Vollrath F (2005) Relationships between supercontraction and mechanical properties of spider silk. Nat Mater 4:901–905

    Article  CAS  PubMed  Google Scholar 

  • Lucas F, Rudall KM (1968) Extracellular fibrous proteins: the silks. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry. Elsevier, NewYork

    Google Scholar 

  • Luo J, Zhang LL, Peng QF, Sun MJ, Zhang YP, Shao HL, Hu XC (2014) Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int J Biol Macromol 66:319–324

    Article  CAS  PubMed  Google Scholar 

  • Maa YF, Hsu CC (1997) Feasibility of protein spray coating using a fluid-bed Wurster processor. Biotechnol Bioeng 53:560–566

    Article  CAS  PubMed  Google Scholar 

  • Machado R, Da Costa A, Sencadas V, Garcia-Arevalo C, Costa CM, Padrao J, Gomes A, Lanceros-Mendez S, Rodriguez-Cabello JC, Casal M (2013) Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomed Mater 8

    Google Scholar 

  • Madsen B, Shao ZZ, Vollrath F (1999) Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. Int J Biol Macromol 24:301–306

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315:592–594

    Article  CAS  PubMed  Google Scholar 

  • Maitip J, Trueman HE, Kaehler BD, Huttley GA, Chantawannakul P, Sutherland TD (2015) Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins. Insect Biochem Mol Biol 59:72–79

    Article  CAS  PubMed  Google Scholar 

  • Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028

    Article  CAS  PubMed  Google Scholar 

  • Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, Gray M, Farley M, Kaplan D, Vunjak-Novakovic G (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27:6138–6149

    Article  CAS  PubMed  Google Scholar 

  • Marsh RE, Corey RB, Pauling L (1955) An investigation of the structure of silk fibroin. Biochim Biophys Acta 16:1–34

    Article  CAS  PubMed  Google Scholar 

  • Megeed Z, Cappello J, Ghandehari H (2002) Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv Drug Deliv Rev 54:1075–1091

    Article  CAS  PubMed  Google Scholar 

  • Megeed Z, Haider M, Li DQ, O’malley BW, Cappello J, Ghandehari H (2004) In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 94:433–445

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Zhang Y, Nakagaki K, Zhao T, Zhao A, Meng Y, Nakagaki M, Park EY, Maenaka K (2005) Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol 71:192–199

    Article  PubMed  CAS  Google Scholar 

  • Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(L-Lactic Acid) foams. Polymer 35:1068–1077

    Article  CAS  Google Scholar 

  • Moraes ML, Lima LR, Silva RR, Cavicchioli M, Ribeiro SJL (2013) Immunosensor based on immobilization of antigenic peptide NS5A-1 from HCV and silk fibroin in nanostructured films. Langmuir 29:3829–3834

    Article  CAS  PubMed  Google Scholar 

  • Morse JC (1997) Phylogeny of trichoptera. Annu Rev Entomol 42:427–450

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan R, Drew C, Mello CM (2007) Polymer-micelle complex as an aid to electrospinning nanofibers from aqueous solutions. J Phys Chem C 111:16105–16108

    Article  CAS  Google Scholar 

  • Neuenfeldt M, Scheibel T (2014) Silks from insects: from natural diversity to applications. Insect molecular biology and ecology. CRC Press, Boca Raton

    Google Scholar 

  • Ohshima Y, Suzuki Y (1977) Cloning of the silk fibroin gene and its flanking sequences. Proc Natl Acad Sci U S A 74:5363–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osaki S (2012) Spider silk violin strings with a unique packing structure generate a soft and profound timbre. Phys Rev Lett 108:154301

    Article  PubMed  CAS  Google Scholar 

  • Papov VV, Diamond TV, Biemann K, Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem 270:20183–20192

    Article  CAS  PubMed  Google Scholar 

  • Park WM, Champion JA (2014) Thermally triggered self-assembly of folded proteins into vesicles. J Am Chem Soc 136:17906–17909

    Article  CAS  PubMed  Google Scholar 

  • Parker KD, Rudall KM (1957) The Silk of the egg-stalk of the green lace-wing fly: structure of the silk of chrysopa egg-stalks. Nature 179:905–906

    Article  CAS  Google Scholar 

  • Parkhe AD, Seeley SK, Gardner K, Thompson L, Lewis RV (1997) Structural studies of spider silk proteins in the fiber. J Mol Recognit : JMR 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Pilotto F, Filosi M (1977) Relationship between collagen fibril diameters and body size – study of fish derma. Cell Tissue Res 182:119–131

    Article  CAS  PubMed  Google Scholar 

  • Porter D, Guan J, Vollrath F (2013) Spider silk: super material or thin fibre? Adv Mater 25:1275–1279

    Article  CAS  PubMed  Google Scholar 

  • Prince JT, Mcgrath KP, Digirolamo CM, Kaplan DL (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34:10879–10885

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Huang Y, Teng W, Cohn CM, Cappello J, WU X (2010) Complete recombinant silk-elastinlike protein-based tissue scaffold. Biomacromolecules 11:3219–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabotyagova OS, Cebe P, Kaplan DL (2009) Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10:229–236

    Article  CAS  PubMed  Google Scholar 

  • Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X (2012) Structure and biodegradation mechanism of milled Bombyx mori silk particles. Biomacromolecules 13:2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 105:6590–6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raphel J, Parisi-Amon A, Heilshorn SC (2012) Photoreactive elastin-like proteins for use as versatile bioactive materials and surface coatings. J Mater Chem 22:19429–19437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  • Riekel C, Vollrath F (2001) Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. Int J Biol Macromol 29:203–210

    Article  CAS  PubMed  Google Scholar 

  • Rising A, Hjalm G, Engstrom W, Johansson J (2006) N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7:3120–3124

    Article  CAS  PubMed  Google Scholar 

  • Römer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2:154–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  • Rudall KM, Kenchington W (1971) Arthropod silks: the problem of fibrous proteins in animal tissues. Annu Rev Entomol 16:73–96

    Article  CAS  Google Scholar 

  • Santoso S, Hwang W, Hartman H, Zhang SG (2002) Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2:687–691

    Article  CAS  Google Scholar 

  • Schacht K, Scheibel T (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12:2488–2495

    Article  CAS  PubMed  Google Scholar 

  • Schacht K, Jungst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angewandte Chemie-International Edition 54:2816–2820

    Article  CAS  PubMed  Google Scholar 

  • Schacht K, Vogt J, Scheibel T (2016). Foams made of engineered recombinant spider silk proteins as 3D scaffolds for cell growth. ACS Biomater Sci Eng, dx.doi.org/10.1021/acsbiomaterials.5b00483

    Google Scholar 

  • Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Factories 3:14

    Article  CAS  Google Scholar 

  • Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196

    Article  CAS  PubMed  Google Scholar 

  • Scheller J, Guhrs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577

    Article  CAS  PubMed  Google Scholar 

  • Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57

    Article  CAS  PubMed  Google Scholar 

  • Sehnal F, Akai H (1990) Insect silk glands: their types, development and function, and effects of environmental factors and morphogenetic hormones on them. Int J Insect Morphol Embryol 19:79–132

    Article  Google Scholar 

  • Seidel A, Liivak O, Calve S, Adaska J, Ji GD, Yang ZT, Grubb D, Zax DB, Jelinski LW (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33:775–780

    Article  CAS  Google Scholar 

  • Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23:4655

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Lua S, Du N, Liu X, Song J (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828

    Article  CAS  PubMed  Google Scholar 

  • Silva-Zacarin EC, De Moraes R L S, Taboga SR (2003) Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae). J Biosci 28:753–764

    Article  PubMed  Google Scholar 

  • Slotta U, Hess S, Spiess K, Stromer T, Serpell L, Scheibel T (2007) Spider silk and amyloid fibrils: a structural comparison. Macromol Biosci 7:183–188

    Article  CAS  PubMed  Google Scholar 

  • Slotta UK, Rammensee S, Gorb S, Scheibel T (2008) An engineered spider silk protein forms microspheres. Angew Chem Int Ed 47:4592–4594

    Article  CAS  Google Scholar 

  • Spiess K, Lammel A, Scheibel T (2010) Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 10:998–1007

    Article  CAS  PubMed  Google Scholar 

  • Spiess K, Ene R, Keenan CD, Senker J, Kremer F, Scheibel T (2011) Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films. J Mater Chem 21:13594–13604

    Article  CAS  Google Scholar 

  • Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005) Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44:4727–4736

    Article  CAS  PubMed  Google Scholar 

  • Stephens JS, Fahnestock SR, Farmer RS, Kiick KL, Chase DB, Rabolt JF (2005) Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via fourier transform Raman spectroscopy. Biomacromolecules 6:1405–1413

    Article  CAS  PubMed  Google Scholar 

  • Stewart RJ (2011) Protein-based underwater adhesives and the prospects for their biotechnological production. Appl Microbiol Biotechnol 89:27–33

    Article  CAS  PubMed  Google Scholar 

  • Stewart RJ, Wang CS (2010) Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines. Biomacromolecules 11:969–974

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Yu H, Shen Y, Banno Y, Xiang Z, Zhang Z (2012) Phylogeny and evolutionary history of the silkworm. Sci China Life Sci 55:483–496

    Article  PubMed  Google Scholar 

  • Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS (2004) Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 84:1222–1224

    Article  CAS  Google Scholar 

  • Sutherland TD, Campbell PM, Weisman S, Trueman HE, Sriskantha A, Wanjura WJ, Haritos VS (2006) A highly divergent gene cluster in honey bees encodes a novel silk family. Genome Res 16:1414–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JW, Haritos VS (2007) Conservation of essential design features in coiled coil silks. Mol Biol Evol 24:2424–2432

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Weisman S, Walker AA, Mudie ST (2012) The coiled coil silk of bees, ants, and hornets. Biopolymers 97:446–454

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Trueman HE, Walker AA, Weisman S, Campbell PM, Dong Z, Huson MG, Woodhead AL, Church JS (2014) Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins. J Struct Biol 186:402–411

    Article  CAS  PubMed  Google Scholar 

  • Tamada Y (2005) New process to form a silk fibroin porous 3-D structure. Biomacromolecules 6:3100–3106

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mori K, Mizuno S (1993) Immunological identification of the major disulfide-linked light component of silk fibroin. J Biochem 114:1–4

    CAS  PubMed  Google Scholar 

  • Tanaka K, Inoue S, Mizuno S (1999a) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29:269–276

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Mizuno S (1999b) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103

    Article  CAS  PubMed  Google Scholar 

  • Teng W, Huang Y, Cappello J, Wu X (2011) Optically transparent recombinant silk-elastinlike protein polymer films. J Phys Chem B 115:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL (2013) Recombinant DNA production of spider silk proteins. Microb Biotechnol 6:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33:645–654

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M, Khan MM, Inoue E, Kimura G, Hun JY, Mishima M, Hirabayashi K (2010) Physical properties and structure of aquatic silk fiber from Stenopsyche marmorata. Int J Biol Macromol 46:54–58

    Article  CAS  PubMed  Google Scholar 

  • Tucker CL, Jones JA, Bringhurst HN, Copeland CG, Addison JB, Weber WS, Mou Q, Yarger JL, Lewis RV (2014) Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents. Biomacromolecules 15:3158–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc Natl Acad Sci U S A 99:10266–10271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Vauthey S, Santoso S, Gong HY, Watson N, Zhang SG (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci U S A 99:5355–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vendrely C, Scheibel T (2007) Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 7:401–409

    Article  CAS  PubMed  Google Scholar 

  • Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollrath F (2000) Strength and structure of spiders silks. J Biotechnol 74:67–83

    CAS  PubMed  Google Scholar 

  • Vollrath F (2006) Spider silk: thousands of nano-filaments and dollops of sticky glue. Curr Biol : CB 16:R925–R927

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F, Porter D (2006) Spider silk as archetypal protein elastomer. Soft Matter 2:377–385

    Article  CAS  Google Scholar 

  • Wang YZ, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sanai K, Wen H, Zhao T, Nakagaki M (2010) Characterization of unique heavy chain fibroin filaments spun underwater by the caddisfly Stenopsyche marmorata (Trichoptera; Stenopsychidae). Mol Biol Rep 37:2885–2892

    Article  CAS  PubMed  Google Scholar 

  • Wang CS, Ashton NN, Weiss RB, Stewart RJ (2014) Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis. Insect Biochem Mol Biol 54:69–79

    Article  CAS  PubMed  Google Scholar 

  • Weichert N, Hauptmann V, Helmold C, Conrad U (2016) Seed-specific expression of spider silk protein multimers causes long-term stability. Front Plant Sci 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisman S, Trueman HE, Mudie ST, Church JS, Sutherland TD, Haritos VS (2008) An unlikely silk: the composite material of green lacewing cocoons. Biomacromolecules 9:3065–3069

    Article  CAS  PubMed  Google Scholar 

  • Weisman S, Okada S, Mudie ST, Huson MG, Trueman HE, Sriskantha A, Haritos VS, Sutherland TD (2009) Fifty years later: the sequence, structure and function of lacewing cross-beta silk. J Struct Biol 168:467–475

    Article  CAS  PubMed  Google Scholar 

  • Weisman S, Haritos VS, Church JS, Huson MG, Mudie ST, Rodgers AJ, Dumsday GJ, Sutherland TD (2010) Honeybee silk: recombinant protein production, assembly and fiber spinning. Biomaterials 31:2695–2700

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Lan X, Zhang Y, Zhao T, Wang Y, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA (2009) Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 5:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiggins GB (2004) Caddisflies: the underwater architects. University of Toronto Press, Toronto

    Google Scholar 

  • Wittmer CR, Hu X, Gauthier PC, Weisman S, Kaplan DL, Sutherland TD (2011) Production, structure and in vitro degradation of electrospun honeybee silk nanofibers. Acta Biomater 7:3789–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlrab S, Spieß K, Scheibel T (2012) Varying surface hydrophobicities of coatings made of recombinant spider silk proteins. J Mater Chem 22:22050–22054

    Article  CAS  Google Scholar 

  • Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112

    Article  CAS  PubMed  Google Scholar 

  • Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107:14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H (2014) The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori. Transgenic Res 23:697–706

    Article  CAS  PubMed  Google Scholar 

  • Xu HT, Fan BL, Yu SY, Huang YH, Zhao ZH, Lian ZX, DAI YP, Wang LL, Liu ZL, Fei J, Li N (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim Biotechnol 18:1–12

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Tremblay ML, Orrell KE, Leclerc J, Meng Q, Liu XQ, Rainey JK (2013) Nanoparticle self-assembly by a highly stable recombinant spider wrapping silk protein subunit. FEBS Lett 587:3273–3280

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Kikuchi Y, Takagi T, Kikuchi A, Oyama F, Shimura K, Mizuno S (1989) Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol 210:127–139

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T, Asakura T (2007) Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules 8:3487–3492

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Tanaka C, Yamauchi K, Ohgo K, Kurokawa M, Asakura T (2008) Silklike materials constructed from sequences of Bombyx mori silk fibroin, fibronectin, and elastin. J Biomed Mater Res A 84:353–363

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Yanagisawa S, asakura T (2004) Design, expression and characterization of collagen-like proteins based on the cell adhesive and crosslinking sequences derived from native collagens. J Biochem 136:643–649

    Article  CAS  PubMed  Google Scholar 

  • Yonemura N, Sehnal F, Mita K, Tamura T (2006) Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules 7:3370–3378

    Article  CAS  PubMed  Google Scholar 

  • Young SL, Gupta M, Hanske C, Fery A, Scheibel T, Tsukruk VV (2012) Utilizing conformational changes for patterning thin films of recombinant spider silk proteins. Biomacromolecules 13:3189–3199

    Article  CAS  PubMed  Google Scholar 

  • Yucel T, Cebe P, Kaplan DL (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97:2044–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeplin PH, Berninger AK, Maksimovikj NC, Van Gelder P, Scheibel T, Walles H (2014a) Improving the biocompatibility of silicone implants using spider silk coatings: immunohistochemical analysis of capsule formation. Handchir Mikrochir Plast Chir 46:336–341

    Article  CAS  PubMed  Google Scholar 

  • Zeplin PH, Maksimovikj NC, Jordan MC, Nickel J, Lang G, Leimer AH, Roemer L, Scheibel T (2014b) Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation. Adv Funct Mater 24:2658–2666

    Article  CAS  Google Scholar 

  • Zhang Y, Hu J, Miao Y, Zhao A, Zhao T, Wu D, Liang L, Miikura A, Shiomi K, Kajiura Z, Nakagaki M (2008) Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol Biol Rep 35:329–335

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Duan H, Karihaloo BL, Wang J (2010) Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc Natl Acad Sci U S A 107:9502–9506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao QH, Li BY (2008) pH-controlled drug loading and release from biodegradable microcapsules. Nanomed Nanotechnol Biol Med 4:302–310

    Article  CAS  Google Scholar 

  • Zhou CZ, Confalonieri F, Jacquet M, Perasso R, LI ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44:119–122

    Article  CAS  PubMed  Google Scholar 

  • Zhu JM, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8:607–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu B, Wang H, Leow WR, Cai Y, Loh XJ, Han MY, Chen X (2015) Silk fibroin for flexible electronic devices. Adv Mater 28(22):4250–4265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by DFG grant SFB 840 TP A8 as well as the Technologie Allianz Oberfranken (TAO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Scheibel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lang, G., Herold, H., Scheibel, T. (2017). Properties of Engineered and Fabricated Silks. In: Parry, D., Squire, J. (eds) Fibrous Proteins: Structures and Mechanisms. Subcellular Biochemistry, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-49674-0_16

Download citation

Publish with us

Policies and ethics