Skip to main content

Implementation of Turing Machine Using DNA Strand Displacement

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10071))

Abstract

The computational capability of biochemical systems is one of the major interest in the area of nanotechnology. Since Bennett proposed his thought experiment of chemical Turing machine using DNA-like molecules, many attempts for DNA Turing machine have been made. However, they are based on some hypothetical assumptions or require laboratory manipulations for each step. Here we propose an implementation of Turing machine by using DNA strand displacement cascades.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beaver, D.: A universal molecular computer. DNA Based Comput. 27, 29–36 (1996)

    Google Scholar 

  2. Bennett, C.H.: The thermodynamics of computationa review. Int. J. Theor. Phys. 21(12), 905–940 (1982)

    Article  Google Scholar 

  3. Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 2011. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23638-9_12

    Chapter  Google Scholar 

  4. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18305-8_12

    Chapter  Google Scholar 

  5. Rondelez, Y., Tresset, G., Tabata, K.V., Arata, H., Fujita, H., Takeuchi, S., Noji, H.: Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol. 23(3), 361–365 (2005)

    Article  Google Scholar 

  6. Rothemund, P.W.: A DNA and restriction enzyme implementation of Turing machines. DNA Based Comput. 27, 75–119 (1996)

    MathSciNet  Google Scholar 

  7. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Comput. 7(4), 615–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Academy Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Yahiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yahiro, W., Hagiya, M. (2016). Implementation of Turing Machine Using DNA Strand Displacement. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2016. Lecture Notes in Computer Science(), vol 10071. Springer, Cham. https://doi.org/10.1007/978-3-319-49001-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49001-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49000-7

  • Online ISBN: 978-3-319-49001-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics