Skip to main content

Fast and Accurate Image Denoising via a Deep Convolutional-Pairs Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9916))

Abstract

Most of popular image denoising approaches exploit either the internal priors or the priors learned from external clean images to reconstruct the latent image. However, it is hard for those algorithms to construct the perfect connections between the clean images and the noisy ones. To tackle this problem, we present a deep convolutional-pairs network (DCPN) for image denoising in this paper. With the observation that deeper networks improve denoising performance, we propose to use deeper networks than those employed previously for low-level image processing tasks. In our method, we attempt to build end-to-end mappings directly from a noisy image to its corresponding noise-free image by using deep convolutional layers in pair applied to image patches. Because of those mappings trained from large data, the process of denoising is much faster than other methods. DCPN is composed of three convolutional-pairs layers and one transitional layer. Two convolutional-pairs layers are used for encoding and the other one is used for decoding. Numerical experiments show that the proposed method outperforms many state-of-the-art denoising algorithms in both speed and performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The source code of the proposed DCPN will be available after this paper is published.

References

  1. Arias-Castro, E., Donoho, D.L.: Does median filtering truly preserve edges better than linear filtering? Ann. Statist. 37(3), 1172–1206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, pp. 60–65 (2005)

    Google Scholar 

  3. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D?. In: CVPR, pp. 2392–2399 (2012)

    Google Scholar 

  4. Chen, F., Zhang, L., Yu, H.: External patch prior guided internal clustering for image denoising. In: ICCV, pp. 603–611 (2015)

    Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  6. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 184–199. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10593-2_13

    Google Scholar 

  7. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)

    Article  MathSciNet  Google Scholar 

  8. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  10. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR, pp. 2862–2869 (2014)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  12. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  13. Liu, H., Xiong, R., Zhang, J., Gao, W.: Image denoising via adaptive soft-thresholding based on non-local samples. In: CVPR, pp. 484–492 (2015)

    Google Scholar 

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  15. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998)

    Google Scholar 

  17. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML, pp. 1096–1103 (2008)

    Google Scholar 

  18. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series, vol. 2. MIT Press, Cambridge (1949)

    MATH  Google Scholar 

  19. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: NIPS, pp. 341–349 (2012)

    Google Scholar 

  20. Xu, J., Zhang, L., Zuo, W., Zhang, D., Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising. In: ICCV, pp. 244–252 (2015)

    Google Scholar 

  21. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China under Grant 61571254, U1201255, U1301257, and Guangdong Natural Science Foundation 2014A030313751.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Sun, L. et al. (2016). Fast and Accurate Image Denoising via a Deep Convolutional-Pairs Network. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9916. Springer, Cham. https://doi.org/10.1007/978-3-319-48890-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48890-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48889-9

  • Online ISBN: 978-3-319-48890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics