Skip to main content

On Strong Tree-Breadth

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10043))

Abstract

In this paper, we introduce and investigate a new notion of strong tree-breadth. We say that a graph G has strong tree-breadth \(\rho \) if there is a tree-decomposition T for G such that each bag B of T is equal to the complete \(\rho \)-neighbourhood of some vertex v in G, i. e., \(B = N_G^\rho [v]\). We show that

  • it is NP-complete to determine if a given graph has strong tree-breadth \(\rho \), even for \(\rho = 1\);

  • if a graph G has strong tree-breadth \(\rho \), then we can find a tree-decomposition for G with tree-breadth \(\rho \) in \(\mathcal {O}(n^2m)\) time;

  • with some additional restrictions, a tree-decomposition with strong breadth \(\rho \) can be found in polynomial time;

  • some graph classes including distance-hereditary graphs have strong tree-breadth 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-life networks: an empirical study. Networks 67(1), 49–68 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41, 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree structure and maximum neighborhood orderings. Discret. Appl. Math. 82, 43–77 (1998)

    Article  MATH  Google Scholar 

  4. Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.: Dually chordal graphs. SIAM J. Discret. Math. 11(3), 437–455 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Fičur, P., Leitert, A., Milanič, M.: Polynomial-time algorithms for weighted efficient domination problems in AT-free graphs and dually chordal graphs. Inf. Process. Lett. 115(2), 256–262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge dominating sets for graphs and hypergraphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Damiand, G., Habib, M., Paul, C.: A simple paradigm for graph recognition: application to cographs and distance hereditary graphs. Theoret. Comput. Sci. 263(1–2), 99–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discret. Math. 307(16), 2008–2029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dragan, F.F., Köhler, E.: An approximation algorithm for the tree t-spanner problem on unweighted graphs via generalized chordal graphs. Algorithmica 69, 884–905 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length of a graph. Algorithmica (in print)

    Google Scholar 

  11. Dragan, F.F., Lomonosov, I.: On compact and efficient routing in certain graph classes. Discret. Appl. Math. 155, 1458–1470 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dragan, F.F., Matamala, M.: Navigating in a graph by aid of its spanning tree. SIAM J. Discret. Math. 25(1), 306–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ducoffe, G., Legay, S., Nisse, N.: On computing tree and path decompositions with metric constraints on the bags. CoRR abs/1601.01958 (2016)

    Google Scholar 

  14. Halin, R.: S-functions for graphs. J. Geom. 8(1–2), 171–186 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory Ser. B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

    Google Scholar 

  18. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Leitert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Leitert, A., Dragan, F.F. (2016). On Strong Tree-Breadth. In: Chan, TH., Li, M., Wang, L. (eds) Combinatorial Optimization and Applications. COCOA 2016. Lecture Notes in Computer Science(), vol 10043. Springer, Cham. https://doi.org/10.1007/978-3-319-48749-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48749-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48748-9

  • Online ISBN: 978-3-319-48749-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics