Skip to main content

Self-optimizing Production Technologies

  • Chapter
  • First Online:

Abstract

Customer demands have become more individual and complex, requiring a highly flexible production. In high-wage countries, efficient and robust manufacturing processes are vital to ensure global competitiveness. One approach to solve the conflict between individualized products and high automation is Model-based Self-optimization (MBSO). It uses surrogate models to combine process measures and expert knowledge, enabling the technical system to determine its current operating point and thus optimize it accordingly. The objective is an autonomous and reliable process at its productivity limit. The MBSO concept is implemented in eight demonstrators of different production technologies such as metal cutting, plastics processing, textile processing and inspection. They all have a different focus according to their specific production process, but share in common the use of models for optimization. Different approaches to generate suitable models are developed. With respect to implementation of MBSO, the challenge is the broad range of technologies, materials, scales and optimization variables. The results encourage further examination regarding industry applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abels P, Kaierle S, Poprawe R, Kratzsch C, Schulz W (2000) Coaxial process control during laser beam welding of tailored blanks. In: Chen X, Fujioka T, Matsunawa A (eds) Advanced high-power lasers and applications. SPIE, pp 472–482

    Google Scholar 

  • Abu Fara D, Kamal MR, Patterson WI (1990) Comprehensive strategies for sequential closed-loop pressure control throughout the injection molding cycle. In: Proceedings of the 56th annual technical conference & exhibition, Antec, pp 239–242

    Google Scholar 

  • Abu Fara D, Rawabdeh I, Abu-Al-Nadi D (2001) Neural network control for cavity pressure during filling and packing stages of the thermoplastics injection molding process. J Injection Molding Technol 2(5):105–119

    Google Scholar 

  • Adams O (2016) Modellbasierte prädiktive Kraftregelung beim Fräsen. Dissertation, RWTH Aachen

    Google Scholar 

  • Adanur S (2000) Handbook of weaving. Technomic Publishing Co., Inc, Lancaster Pa

    Book  Google Scholar 

  • Altintas Y (2012) Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Anderson C (2006) Improve Welding Quality With 3D Laser Seam-Tracking. Welding Design & Fabrication(79):34

    Google Scholar 

  • Anon (2002) Mehr Automatisierung im Kopf. Blech Rohre Profile

    Google Scholar 

  • Ashby WR (1952) Design for a brain. Wiley, New York

    MATH  Google Scholar 

  • Baier J (1985) Entwicklung einer digitalen AC-Grenzregelung für Tiefbohrmaschinen unter Betrachtung geeigneter Prozesskenngrößen. VDI-Verl, Düsseldorf

    Google Scholar 

  • Bartelt M, Domroes F, Kuhlenkoetter B (2012) A flexible haptic test bed. In: 7th German conference on robotics; Proceedings of ROBOTIK 2012, pp 1–6

    Google Scholar 

  • Belforte D (2015) Fiber lasers continue growth streak in 2014 laser market. Ind Laser Solutions 5–13

    Google Scholar 

  • Benouamer MO, Michelucci D (1997) Bridging the gap between CSG and Brep via a triple ray representation:68–79. doi:10.1145/267734.267755

  • Beyer E, Petring D, Abels P, Herziger G (1989) Verfahren und Vorrichtung zum Abtragen insbesondere metallischer Werkstuecke mit Laserstrahlung. Fraunhofer ILT, Forschungsbericht

    Google Scholar 

  • Bickel PJ, Doksum KA (2007) Mathematical statistics: basic ideas and selected topics, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Biermann S (1994) Besser Schneiden mit Sensoren. Laser Praxis:LS56

    Google Scholar 

  • Bischoff J, Taphorn C, Wolter D, Braun N, Fellbaum M, Goloverov A, Ludwig S, Hegmanns T, Prasse C, Henke M, ten Hompel M, Döbbeler F, Fuss E, Kirsch C, Mättig B, Braun S, Guth M, Kaspers M, Scheffler D (2015) Erschließen der Potentiale der Anwendungen von ‘Industrie 4.0’ im Mittelstand: Kurzfassung der Studie. Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWi)

    Google Scholar 

  • Boillot JP, Noruk J (2006) Laservision technology—ensure six sigma-level is achieved in robotic welding. Can Welding Assoc J 2006:8–14

    Google Scholar 

  • Boz Y, Erdim H, Lazoglu I (2011) Modeling cutting forces for five axis milling of sculptured surfaces. AMR 223:701–712. doi:10.4028/www.scientific.net/AMR.223.701

    Article  Google Scholar 

  • Brecher C (ed) (2012) Integrative production technology for high-wage countries. Springer, Berlin

    Google Scholar 

  • Brecher C (ed) (2014) Integrative Produktion: Industrie 4.0 - Aachener Perspektiven; [Tagungsband]. Shaker, Aachen

    Google Scholar 

  • Brecher C, Klocke F, Schuh G, Schmitt R (eds) (2008) Wettbewerbsfaktor Produktionstechnik: Aachener Perspektiven; [Tagungsband; AWK, Aachener Werkzeugmaschinen-Kolloquium, 5. bis 6. Juni]. Apprimus Verl, Aachen

    Google Scholar 

  • Brosnan T, Sun D (2004) Improving quality inspection of food products by computer vision—a review. J Food Eng 61(1):3–16. doi:10.1016/S0260-8774(03)00183-3

    Article  Google Scholar 

  • Bubb H (2015) Automobilergonomie. ATZ/MTZ-Fachbuch. Springer Fachmedien Wiesbaden, Wiesbaden

    Google Scholar 

  • Budak E (2006) Analytical models for high performance milling. Part I: cutting forces, structural deformations and tolerance integrity. Int J Mach Tools Manuf 46(12–13):1478–1488. doi:10.1016/j.ijmachtools.2005.09.009

    Article  Google Scholar 

  • Cabral GF (2015) An improved approach to modeling and simulation of tool engagement and prediction of process forces in milling. Dissertation, RWTH Aachen

    Google Scholar 

  • Chen Z, Turng L (2005) A review of current developments in process and quality control for injection molding. Adv Polymer Technol 24(3):165–182

    Google Scholar 

  • Chin J (1987) Voraussetzungen und Konzeption eines Grenzwertregelungs-Systems für das Einlippen-Tiefbohren. Dissertation, Universität Stuttgart

    Google Scholar 

  • Choset HM (2005) Principles of robot motion: theory, algorithms, and implementation. Intelligent robotics and autonomous agents. MIT Press, Cambridge

    Google Scholar 

  • Cloppenburg F, Gloy Y, Gries T (2015) Realization of an automated vertical warp stop motion positioning. Actuators 4:2–16. doi:10.3390/act4010002

  • Corke PI (2013) Robotics, vision and control: Fundamental algorithms in MATLAB. Springer tracts in advanced robotics, vol 73. Springer, Berlin

    Google Scholar 

  • Craig JJ (2005) Introduction to robotics: mechanics and control, 3rd edn. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Cus F, Zuperl U, Balic J (2011) Combined feedforward and feedback control of end milling system. J Achiev Mater Manuf Eng 45(1):79–88

    Google Scholar 

  • Dean A, Morris M, Stufken J, Bingham D (2015) Handbook of design and analysis of experiments. Chapman & Hall/CRC handbooks of modern statistical methods. CRC Press, Boca Raton

    Google Scholar 

  • Dikta G, Kvesic M, Schmidt C (2006) Bootstrap approximations in model checks for binary data. J Am Statis Assoc (JASA) 101:521–530

    Article  MathSciNet  MATH  Google Scholar 

  • DIN 60000; Deutscher Normenausschuß (1969) Textilien - Grundbegriffe

    Google Scholar 

  • DIN 8589-2; Deutsches Institut für Normung e. V. (2003) Manufacturing processes chip removal—part 2: drilling, countersinking and counterboring, reaming; classification, subdivision, terms and definitions

    Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis. Wiley series in probability and statistics. Texts and references section, 3rd edn. Wiley, New York

    Google Scholar 

  • Dumont GA, Huzmezan M (eds) (2002) Concepts, methods and techniques in adaptive control. In: Proceedings of the 2002 American control conference (IEEE Cat. No.CH37301), vol 2

    Google Scholar 

  • Durstenfeld R (1964) Algorithm 235: random permutation. Commun ACM 7(7):420. doi:10.1145/364520.364540

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap, [3. Dr.] with corr. Monographs on statistics and applied probability, vol 57. Chapman & Hall, New York

    Google Scholar 

  • Engel A (2010) Verification, validation, and testing of engineered systems. Wiley series in systems engineering and management. Wiley, Hoboken

    Book  Google Scholar 

  • Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters. Int J Mach Tools Manuf 41(15):2195–2212. doi:10.1016/S0890-6955(01)00045-1

    Article  Google Scholar 

  • Erdim H, Lazoglu I, Ozturk B (2006) Feedrate scheduling strategies for free-form surfaces. Int J Mach Tools Manuf 46(7–8):747–757. doi:10.1016/j.ijmachtools.2005.07.036

    Article  Google Scholar 

  • Fahrmeir L, Kneib T, Lang S (2009) Regression: Modelle, Methoden und Anwendungen. Springer, Berlin

    Book  MATH  Google Scholar 

  • Featherstone R (2008) Rigid body dynamics algorithms. Springer, New York

    Book  MATH  Google Scholar 

  • Fishel JA, Loeb GE (2012) Bayesian exploration for intelligent identification of textures. Front Neurorobot 6:4. doi:10.3389/fnbot.2012.00004

    Article  Google Scholar 

  • Frank U, Giese H, Klein F, Oberschelp O, Schmidt A, Schulz B, Vöcking H, Witting K, Gausemeier J (2004) Selbstoptimierende Systeme des Maschinenbaus. Bonifatius, Paderborn

    Google Scholar 

  • Fritz AH, Schulze G (2010) Fertigungstechnik, 9th edn. Springer-Lehrbuch, Springer-Verlag, Berlin

    Book  Google Scholar 

  • Gausemeier J (ed) (2004) Selbstoptimierende Systeme des Maschinenbaus: Definitionen und Konzepte. Sonderforschungsbereich 614. HNI-Verlagsschriftenreihe, vol 155. Heinz Nixdorf Institut, Universität Paderborn, Paderborn

    Google Scholar 

  • Gausemeier J, Rammig F, Schäfer W (2007) Selbstoptimierung im Maschinenbau. Forschungs Forum Universität Paderborn 50–55

    Google Scholar 

  • Gausemeier J, Rammig FJ, Adelt P (eds) (2009) Selbstoptimierende Systeme des Maschinenbaus–Definitionen, Anwendungen, Konzepte, 1st edn. Univ. Paderborn Heinz Nixdorf Inst (HNI-Verlagsschriftenreihe, 234), Paderborn

    Google Scholar 

  • Gausemeier J, Rammig FJ, Schäfer W, Sextro W (eds) (2014) Dependability of self-optimizing mechatronic systems. Springer (Lecture notes in mechanical engineering), Heidelberg, New York, NY, Dordrecht, London, Berlin

    Google Scholar 

  • Geisser S (1993) Predictive inference: An introduction. Monographs on statistics and applied probability, vol 55. Chapman & Hall, New York

    Google Scholar 

  • Gill PE, Murray W, Wright MH (1991) Numerical linear algebra and optimization. Addison-Wesley Pub. Co., Redwood City

    MATH  Google Scholar 

  • Glaser J J, Hoffmeister H (2008) In-Prozess-Analyse beim Einlippenbohren von Nickelbasislegierungen. VDI-Z Integrierte Produktion 2:59–62

    Google Scholar 

  • Gloy Y (2013) Modellbasierte Selbstoptimierung des Webprozesses. Techn. Hochsch., Diss.—Aachen, 2012. Textiltechnik. Shaker, Aachen

    Google Scholar 

  • Gloy Y, Renkens W, Herty M, Gries T (2015a) Simulation and optimisation of warp tension in the weaving Process. J Textile Sci Eng 5(01). doi:10.4172/2165-8064.1000179

  • Gloy Y, Sandjaja F, Gries T (2015b) Model based self-optimization of the weaving process. CIRP J Manuf Sci Technol 9:88–96. doi:10.1016/j.cirpj.2015.01.001

    Article  Google Scholar 

  • Gornik C (2005) Rheologische Daten direkt an der Maschine bestimmen. Kunststoffe 95(4):88–92

    Google Scholar 

  • Gradišek J, Kalveram M, Weinert K (2004) Mechanistic identification of specific force coefficients for a general end mill. Int J Mach Tools Manuf 44(4):401–414. doi:10.1016/j.ijmachtools.2003.10.001

    Article  Google Scholar 

  • Griffiths B (2001) Manufacturing surface technology: surface integrity & functional performance. Penton, London

    Google Scholar 

  • Gruber J (2005) Prozessführung beim Thermoplastspritzgießen auf Basis des Werkzeuginnendrucks. Dissertation, RWTH Aachen

    Google Scholar 

  • Guttmann G, Kittner I, Wegscheider S, Pirkner P (1994) Allgemeine Psychologie: Experimentalpsychologische Grundlagen, 2. Aufl. WUV-Studienbücher. WUV-Univ.-Verl., Wien

    Google Scholar 

  • Hagen G (1839) Ueber die Bewegung des Wassers in engen cylindrischen Röhren. Ann Phys 122(3):423–442. doi:10.1002/andp.18391220304

    Article  Google Scholar 

  • Heinzler FA (2014) Modellgestützte Qualitätsregelung durch eine adaptive, Druckgeregelte Prozessführung beim Spritzgießen. Dissertation, Universität Duisburg

    Google Scholar 

  • Heisel U, Sabou F, Maier D (2012) Relation of process and condition monitoring at deep hole drilling. J Mach Eng 12:99–110

    Google Scholar 

  • Hengesbach JA (1976) Verbesserung der Prozeßführung beim Spritzgießen durch Prozeßüberwachung. Dissertation, RWTH Aachen

    Google Scholar 

  • Hirano K, Fabbro R (2011) Experimental investigation of hydrodynamics of melt layer during laser cutting of steel. J Phys D Appl Phys 44(10):105502

    Article  Google Scholar 

  • Hopmann C, Ressmann A, Reiter M, Stemmler S, Abel D (2015a) A self-optimising injection moulding process with model-based control system parameterisation. Int J Comput Integr Manuf 1–10. doi:10.1080/0951192X.2015.1066035

  • Hopmann C, Walach P, Ressmann A (2013) Process control: precision injection-compression molding. Kunststoffe Int 103(07):54–58

    Google Scholar 

  • Hopmann C, Weber M, Ressmann A (2015b) Effect analysis for compensating viscosity fluctuations by means of a self-optimising injection moulding process. AIP Conf Proc 1664(110004):1–5

    Google Scholar 

  • Horn A (2004) Laserschneidmaschine und Verfahren zum Laserschneiden (EP 0873813 B1)

    Google Scholar 

  • Hou Z (2003) Beitrag zur voxelbasierten Simulation des fünfachsigen NC-Fräsens. Berichte aus dem Produktionstechnischen Zentrum Berlin. Fraunhofer-IRB-Verl, Stuttgart

    Google Scholar 

  • Hunt VD (1988) Robotics sourcebook. Elsevier, New York

    Google Scholar 

  • Hunt WA, Voelcker HB (1982) An exploratory study of automatic verification of programs for numerically contolled machine tools

    Google Scholar 

  • IEC 61020; CENELEC (2009) Electromechanical switches for use in electrical and electronic equipment

    Google Scholar 

  • Isermann R (1987) Digitale Regelsysteme, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Jang D, Kim K, Jung J (2000) Voxel-Based Virtual Multi-Axis Machining. Int J Adv Manuf Technol 16(10):709–713. doi:10.1007/s001700070022

    Article  Google Scholar 

  • Jeschke S, Gries T, Schmitt R, Hees F, Reuter S (2014) Wirtschaftliche Serienfertigung textiler Preforms mittels Umflechtverfahren durch Integration automatisierter Handlingsmethoden und online Qualitätssicherung. Schlussbericht zum IGF-Vorhaben IGF-Nr.: 17158 N

    Google Scholar 

  • Johannaber F, Michaeli W (2004) Handbuch Spritzgießen. Hanser, München

    Book  Google Scholar 

  • Jorgensen H, Olsen FO (1991) Process monitoring during CO laser cutting. In: Kim JJ, Tittel FK (eds) Optics, electro-optics, and laser applications in science and engineering. SPIE, pp 198–208

    Google Scholar 

  • Kaierle S (2005) Process monitoring and control for laser materials processing—an overview

    Google Scholar 

  • Kalman R (1958) Design of self-optimizing control system. Trans ASME 80:468–478

    Google Scholar 

  • Kaplan A, Schuöcker D, Wagler O (1996) On-line Qualitätsüberwachung beim Laserstrahlschneiden. Laser und Optoelektronik

    Google Scholar 

  • Keitzel G (2016) Präventive Parameteranpassung zur Sicherstellung des Spanabtransports beim Einlippentiefbohren. Dissertation, RWTH Aachen University

    Google Scholar 

  • Keitzel G, Kamps S, Veselovac D (2015) Modulares Softwaresystem zur Prozessüberwachung, Modellbildung und Prozessregelung beim Einlippentiefbohren. In: Jamal R, Heinze R (eds) Virtuelle Instrumente in der Praxis 2015: Mess-, Steuer-, Regel- und Embedded-Systeme; Begleitband zum 20. VIP-Kongress; [20 Jahre VIP]. VDE-Verl., Berlin, Offenbach, pp 227–231

    Google Scholar 

  • Kemper M, Saggiomo M, Gloy Y (2016) Weaving machine as cyber-physical production system: multi-objective self-optimization of the weaving process. In: Proceedings of the 2016 IEEE international conference on industrial technology (ICIT), pp 2084-tf-015857

    Google Scholar 

  • Kersting M (2009) Entwicklung und Anwendung eines adaptiven Schwingungsdämpfers für das Einlippentiefbohren. Techn. Univ., Diss.—Dortmund, 2009. Schriftenreihe des ISF, vol 47. Vulkan-Verl., Essen

    Google Scholar 

  • Kienzle O, Victor H (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z 94(11–12):155–171

    Google Scholar 

  • Kinkel S (2005) Anforderungen an die Fertigungtechnik von morgen: Wie verändern sich Variantenzahlen, Losgrößen, Materialeinsatz, Genauigkeitsanforderungen und Produktlebenszyklen tatsächlich? Mitteilungen aus der Produktionsinnovationserhebung

    Google Scholar 

  • Kleppmann W (2013) Versuchsplanung. Produkte und Prozesse optimieren, 8., überarb. Aufl. Hanser (Praxisreihe Qualitätswissen), München

    Google Scholar 

  • Klocke F (2014) Technologiewissen für die digitale Produktion. In: Brecher C (ed) Integrative Produktion: Industrie 4.0 - Aachener Perspektiven; [Tagungsband]. Shaker, Aachen, pp 247–269

    Google Scholar 

  • Klocke F, Abel D, Hopmann C, Auerbach T, Keitzel G, Reiter M, Reßmann A, Stemmler S, Veselovac D (2015) Approaches of self-optimising systems in manufacturing. In: Brecher C (ed) Advances in production technology. Spinger, Berlin, Heidelberg, pp 161–173

    Google Scholar 

  • Klocke F, Arntz K, Cabral GF, Stolorz M, Busch M (2011) Characterization of tool wear in high-speed milling of hardened powder metallurgical steels. Adv Tribol 2:1–13. doi:10.1155/2011/906481

    Google Scholar 

  • Klocke F, Keitzel G, Veselovac D (2014) Innovative sensor concept for chip transport monitoring of gun drilling processes. In: 6th CIRP international conference on high performance cutting (HPC 2014), vol 14, pp 460–465. doi:10.1016/j.procir.2014.03.096

  • Kohlhaas O (1983) Einfluß einzelner Webmaschinenparameter auf die Gewebeerzeugung und die Kettfadenbeanspruchung. Dissertation, Technsiche Hochschule Aachen

    Google Scholar 

  • Kohrt C, Stamp R, Pipe AG, Kiely J, Schiedermeier G (2013) An online robot trajectory planning and programming support system for industrial use. Robot Comput Integr Manuf 29(1):71–79. doi:10.1016/j.rcim.2012.07.010

    Article  Google Scholar 

  • Kovacevic R, Zhang YM, Ruan S (1995) Sensing and control of weld pool geometry for automated GTA welding. J Eng Ind 117:210–222

    Article  Google Scholar 

  • Kudlik N (1997) Reproduzierbarkeit des Kunststoff-Spritzgießprozesses. Dissertation, RWTH Aachen

    Google Scholar 

  • Kyosev Y (2014) Braiding technology for textiles: principles, design and processes. Woodhead Publishing Series in Textiles, Elsevier Science, Burlington

    Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall series in automatic computation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Löbbe H (2003) Tiefbohren auf Bearbeitungszentren. Univ., Diss.—Dortmund, 2003. Schriftenreihe des ISF, vol 18. Vulkan-Verl., Essen

    Google Scholar 

  • Matzke A (1985) Prozeßrechnereinsatz beim Spritzgießen. Dissertation, RWTH Aachen

    Google Scholar 

  • McHaney R (1991) Computer simulation: a practical perspective. Academic Press, San Diego

    Google Scholar 

  • Menges G, Michaeli W, Mohren P (2007) Spritzgießwerkzeuge. Hanser, München

    Book  Google Scholar 

  • Menges G, Schmidt L, Kemper W, Storzer A (1980) Rechnerische Beschreibung von Abkühlvorgängen. Plastverarbeiter 31(4):197–200

    Google Scholar 

  • Menges G, Stitz S, Vargel J (1971) Grundlagen der Prozeßsteuerung beim Spritzgießen. Kunststoffe 61(2):74–80

    Google Scholar 

  • Mersmann C (2012) Industrialisierende Machine-Vision-Integration im Faserverbundleichtbau. Ergebnisse aus der Produktiontechnik. Apprimus Verlag, Aachen, Germany

    Google Scholar 

  • Michalewicz Z, Fogel DB (2000) How to solve it: Modern heuristics; with 7 tables, Corr. 2. printing. Springer, Berlin

    Google Scholar 

  • Minoufekr M (2015) Macroscopic Simulation of Multi-Axis Machining Processes, 1. Aufl. Prozesstechnologie, 12/2015. Apprimus Verlag, Aachen

    Google Scholar 

  • Molitor T, Schneider F, Bußkamp T, Thombansen U, Eppelt U, Petring D, Schulz W (2010) Self-optimizing focus technique (SOFT)—a new approach on the way to next generation cognitive laser cutting machines. In: ICALEO 2010, 29th International Congress on Applications of Lasers & Electro-Optics. Congress proceedings. CD-ROM, LIA, Orlando

    Google Scholar 

  • Mood AM, Graybill FA, Boes DC (1973, ©1974) Introduction to the theory of statistics, 3d edn. McGraw-Hill series in probability and statistics. McGraw-Hill, New York

    Google Scholar 

  • Moré JJ, Sorensen DC (1983) Computing a trust region step. J Sci Statis Comput 3:553–572

    Article  MathSciNet  MATH  Google Scholar 

  • Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin

    Book  MATH  Google Scholar 

  • Niepold R., Brümmer F. (1984) PASS—a visual sensor for seam tracking and on-line process parameter control in arc-welding applications. In: N.N. (ed) Proceedings 14th international symposium on industrial robots and 7th international conference on industrial robot technology, pp 375–385

    Google Scholar 

  • Nishimoto H, Ohtani A, Nakai A, Hamada H (2008) Generation for circumferential distribution of braiding angle on cylindrical tubular braided fabrics. In: Advani SG (ed) Recent advances in textile composites. Destech Publishing, Lancaster, PA, pp 471–480

    Google Scholar 

  • Nixon MS, Aguado AS (2012) Feature extraction & image processing for computer vision, 3rd edn. Academic Press, Oxford

    Google Scholar 

  • Nolzen H, Isermann R (1995a) Adaptive control of the cutting power for milling operation. In: Proceedings of the American control conference, pp 2185–2189

    Google Scholar 

  • Nolzen H, Isermann R (1995b) Fast adaptive cutting force control for milling operation. In: Proceedings of the 4th IEEE conference on control applications, pp 760–765. doi:10.1109/CCA.1995.555844

  • Nouri M, Fussel BK (2013) Real-time milling force control and tool wear monitoring using constraint-based feedrates. In: Proceedings of NAMRI/SME 41

    Google Scholar 

  • Obendrauf W, Langecker GR (1998) IR-Temperatursensoren für die Kunststoffverarbeitung – Meßprinzip. Vorteile und Anwendung. Österr. Kunststoff- Zeitschrift 29(3/4):54–58

    Google Scholar 

  • Osman IH, Kelly JP (1996) Meta-heuristics: theory and applications. Springer, Boston

    Book  MATH  Google Scholar 

  • Owen AE (1928) The tension in a single warp thread during plain weaving. J Textile Inst Trans 19(11):T365–T388. doi:10.1080/19447022808661467

    Article  Google Scholar 

  • Permin E, Bertelsmeier F, Blum M, Bützler J, Haag S, Kuz S, Özdemir D, Stemmler S, Thombansen U, Schmitt R, Brecher C, Schlick C, Abel D, Poprawe R, Loosen P, Schulz W, Schuh G (2016) Self-optimizing production systems. Procedia CIRP 41:417–422. doi:10.1016/j.procir.2015.12.114

    Article  Google Scholar 

  • Petring D (1995) Anwendungsorientierte Modellierung des Laserstrahlschneidens zur rechnergestützten Prozeßoptimierung. Shaker

    Google Scholar 

  • Petring D, Schneider F, Wolf N, Nazery Goneghany V (eds) (2009) How Beam Quality, Power and Wavelength Influence Laser Cutting and Welding Processes

    Google Scholar 

  • Pien P, Tomizuka M (1992) Adaptive force control of two dimensional milling. In: American control conference, pp 399–403

    Google Scholar 

  • Poiseuille JL (1841) Recherches sur le Mouvement du Sang dans les Vein Capillaires. Mem Acad R Sci 7:105–175

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Queren-Lieth W (2002) Sensoren für die Schweißautomatisierung - Sensoren zum Schweißen mit offenem Lichtbogen. Schweißen und Schneiden 54(4):214–216

    Google Scholar 

  • Rao RV (2011) Advanced modeling and optimization of manufacturing processes: International research and development. Springer series in advanced manufacturing. Springer, London

    Book  Google Scholar 

  • Razali N, Wah Y (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Statist Model Anal 2(1):22–31

    Google Scholar 

  • Register A (2015) Continious time simulation. In: Loper ML (ed) Modeling and simulation in the systems engineering life cycle. Springer, London, pp 111–138

    Google Scholar 

  • Reiter M, Stemmler S, Hopmann C, Ressmann A (2014) A model predictive control of cavity pressure in an injection moulding process. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC)

    Google Scholar 

  • Richardson RW, Gutow DA, Rao S (1982) A vision based system for arc weld pool size control. In: Dornfeld DS (ed) Measurement and control for batch manufacturing. American Society of Mechanical Engineering, pp 66–77

    Google Scholar 

  • Rohs HG (1977) Tiefbohren ‘77: Tagung Dortmund 1977. VDI-Berichte, vol 301. VDI-Verl., Düsseldorf

    Google Scholar 

  • Rosemann B (2012) Spanende Fertigung. In: Steinhilper R, Rieg F (eds) Handbuch Konstruktion. Hanser, München, pp 1001–1048

    Google Scholar 

  • Rösler F, Battenberg G, Schüttler F (2009) Subjektive Empfindungen und objektive Charakteristika von Bedienelementen. Automobiltechnische Zeitrschrift 111(04):292–297

    Article  Google Scholar 

  • Rubio FJ, Valero FJ, Suñer JL, Mata V (2009) Simultaneous Algorithm to Solve the Trajectory Planning Problem. Mech Mach Theory 44(10):1910–1922. doi:10.1016/j.mechmachtheory.2009.04.005

    Article  MATH  Google Scholar 

  • Russell SJ, Norvig P (2010) Artificial intelligence: a modern approach, 3. edn. Prentice-Hall series in artificial intelligence. Pearson, Boston

    Google Scholar 

  • Schlick C, Faber M, Kuz S, Bützler J (2014) Erweiterung einer kognitiven Architektur zur Unterstützung der Mensch-Roboter-Kooperation in der Montage. In: Wie intelligente Vernetzung und kognitive Systeme unsere Arbeit verändern. Schriftreihe der Hochschulgruppe für Arbeits- und Betriebsorganisation e.V. (HAB), pp 239–263

    Google Scholar 

  • Schmidt TW (1986) Zur Abschätzung der Schwindung. Dissertation, RWTH Aachen

    Google Scholar 

  • Schmitt R, Brecher C, Corves B, Gries T, Jeschke S, Klocke F, Loosen P, Michaeli W, Müller R, Poprawe R, Reisgen U, Schlick C, Schuh G (2012) Self-Optimizing Porduction Systems. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin, pp 697–986

    Chapter  Google Scholar 

  • Schneider F (2004) Überwachung, Regelung und Automatisierung beim Hochgeschwindigkeitsschneiden von Elektroblechen mit Laserstrahlung. Shaker

    Google Scholar 

  • Schreiber A (2011) Regelung des Spritzgießprozesses auf Basis von Prozessgrößen und im Werkzeug ermittelter Materialdaten. Dissertation, RWTH Aachen

    Google Scholar 

  • Schuh G, Orilski S, Kreysa J (2007) Integrierte Produktionstechnik: Chancen für die Produktion in Hochlohnländern. In: Schuh G, Klocke F, Brecher C, Schmtt R (eds) Excellence in production: Festschrift für Univ.-Prof. Dr.-Ing. Dipl.-Wirt. Ing. Dr. techn. h.c. Dr. oec. h.c. Walter Eversheim. Apprimus-Verl., Aachen, pp 31–53

    Google Scholar 

  • Schulz W, Kostrykin V, Zefferer H, Petring D, Poprawe R (1997) A free boundary problem related to laser beam fusion cutting: ODE approximation. Int J Heat Mass Transf 40(12):2913–2928

    Article  MATH  Google Scholar 

  • Seier E (2002) Comparison of tests for univariate normality. InterStat Statist J 1:1–17

    Google Scholar 

  • Spingler MR (2011) Metrological system for perceived quality parameters to establish transfer functions to human perception. Apprimus, Aachen

    Google Scholar 

  • Spur G (1972) Optimierung des Fertigungssystems: Werkzeugmaschine. Fortschritte der Fertigung auf Werkzeugmaschinen, vol 3. Hanser, München

    Google Scholar 

  • Stachowiak H (1973) Allgemeine Modelltheorie. Springer, Wien

    Book  Google Scholar 

  • Stautner M (2006) Simulation und Optimierung der mehrachsigen Fräsbearbeitung. Schriftenreihe des ISF, vol 32. Vulkan-Verl., Essen

    Google Scholar 

  • Stein F (1926) Einbindungsvorgänge in tuchbindigen Kunstseidengeweben. Dissertation, Technische Hochschule Stuttgart

    Google Scholar 

  • Stifter S (1995) Simulation of NC machining based on the dexel model: A critical analysis. Int J Adv Manuf Technol 10(3):149–157. doi:10.1007/BF01179343

    Article  Google Scholar 

  • Stitz S, Hengesbach H-, Pütz D (1973) Konstante Formteilqualität beim Spritzgießen durch Regeln des Werkzeug-Druckverlaufs. Kunststoffe 63(11):777–783

    Google Scholar 

  • Taner TL, Matej S, Jan K (2015) Integrated simulation system for 5-axis milling cycles. Procedia CIRP 31:64–69. doi:10.1016/j.procir.2015.03.057

    Article  Google Scholar 

  • Thombansen U, Auerbach T, Schüttler J, Beckers M, Buchholz G, Eppelt U, Gloy Y, Fritz P, Kratz S, Lose J, Molitor T, Reßmann A, Schenuit H, Willms K, Gries T, Michaeli W, Petring D, Poprawe R, Reisgen U, Schmitt R, Schulz W, Veselovac D (2012) The Road to Self-optimising Production Technologies. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin, pp 793–849

    Google Scholar 

  • Thombansen U, Hermanns T, Molitor T, Pereira M, Schulz W (2014) Measurement of cut front properties in laser cutting. In: Laser assisted net shape engineering 8. Elsevier, Amsterdam

    Google Scholar 

  • Thombansen U, Schüttler J, Auerbach T, Beckers M, Buchholz G (2011) Model-based self-optimization for manufacturing systems. In: Thoben K-D, Stich V, Imtiaz A (eds) 17th international conference on concurrent enterprising (ICE), Piscataway. IEEE, Aachen, Germany

    Google Scholar 

  • Tsoi H, Gao F (1999) Control of injection velocity using a fuzzy logic rule-based controller for thermoplastics injection molding. Polym Eng Sci 39(1):3

    Article  Google Scholar 

  • Tukora B, Szalay T (2012) Multi-dexel based material removal simulation and cutting force prediction with the use of general-purpose graphics processing units. Adv Eng Softw 43(1):65–70. doi:10.1016/j.advengsoft.2011.08.003

    Article  Google Scholar 

  • Tunc LT, Budak E (2009) Extraction of 5-axis milling conditions from CAM data for process simulation. Int J Adv Manuf Technol 43(5–6):538–550. doi:10.1007/s00170-008-1735-7

    Article  Google Scholar 

  • Vaculik R (1996) Regelung der Formteilqualität beim Spritzgießen auf der Basis statistischer Prozeßmodelle. Dissertation, RWTH Aachen

    Google Scholar 

  • van der Meulen W (1987) Qualitätssicherung durch Prozessüberwachung. In: Gesellschaft-Kunststofftechnik (ed) Qualiätssicherung im Spritzgießbetrieb, pp 129–142

    Google Scholar 

  • VDI 3633; Verein Deutscher Ingenieure e.V. (2013) Simulation von Logistik-, Materialfluss- und Produktionssystemen - Begriffe

    Google Scholar 

  • Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps 107(3):391–408

    Google Scholar 

  • Walz T (1992) Zerspanleistungsregelung beim Fräsen. Darmstädter Forschungsberichte für Konstruktion und Fertigung. Hanser, München, Wien

    Google Scholar 

  • Weinert K, Löbbe H, Webber O (2000) Spanüberwachung sichert Prozess - Tiefbohren mit Einlippenbohrern. Technica 24:16–21

    Google Scholar 

  • Weinert K, Peters C, Mehnen J (2002) Rechnerbasierte Prozess-Zustandserkennung beim Einlippen-Tiefbohren. VDI-Z Integrierte Produktion 1:48–51

    Google Scholar 

  • Wezenbeek HC (1992) A system for measurement and control of weld pool geometry in automatic arc welding. Dissertation, Technische Universiteit Eindhoven

    Google Scholar 

  • Wiener D (1951) Cybernetics, 9th edn. New York

    Google Scholar 

  • Winkler U (2009) Qualität im Cockpit. Automobil-Produktion 8/12:54–55

    Google Scholar 

  • Wirtz GF (2010) Adaptive Regelung für das Tiefbohren mit Einlippenbohrern kleiner Durchmesser. Technologie der Fertigungsverfahren, Bd. 2010,9. Apprimus-Verl., Aachen

    Google Scholar 

  • Wittkop S (2007) Einlippentiefbohren nichtrostender Stähle. Univ., Diss.—Dortmund, 2007. Schriftenreihe des ISF, vol 40. Vulkan-Verl., Essen

    Google Scholar 

  • Wolters T (2003) Verbesserte Webmaschineneinstellungen mittels Simulationsrechnungen. Dissertation, RWTH Aachen

    Google Scholar 

  • Yun KC, Ki HK (1998) Automated visual inspection system of automobile doors and windows using the adaptive feature extraction. In: Second international conference on conventional and knowledge-based intelligent electronic systems (KES ’98), pp 286–293

    Google Scholar 

  • Zabel A (2010) Prozesssimulation in der Zerspanung: Modellierung von Dreh- und Fräsprozessen. Schriftenreihe des ISF / H, vol 2. Vulkan-Verl, Essen

    Google Scholar 

  • Zhang X, Yu T, Wang W (2014) Modeling, simulation, and optimization of five-axis milling processes. Int J Adv Manuf Technol 74(9–12):1611–1624. doi:10.1007/s00170-014-6075-1

    Article  Google Scholar 

  • Zhang YM, Lu W, Emmerson J (2004) Sensing of weld pool surface using non-transferred plasma charge sensor. Meas Sci Technol 15:991–999

    Article  Google Scholar 

  • Zheng D, Alleyne A (2000) Learning control of an electro-hydraulic injection molding machine with smoothed fill-to-pack transition. In: Proceedings of the 2000 American control conference, pp 2558–2562

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Klocke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Klocke, F. et al. (2017). Self-optimizing Production Technologies. In: Brecher, C., Özdemir, D. (eds) Integrative Production Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-47452-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47452-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47451-9

  • Online ISBN: 978-3-319-47452-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics