Skip to main content

Abstract

Aujeszky’s disease (AD) or pseudorabies (PR), also referred as “mad itch,” is a highly contagious, economically significant disease of pigs caused by suid herpesvirus 1 (SHV-1). ADV can infect a wide range of mammals and birds, but it is considered as non-pathogenic for human. In non-porcine species, ADV infection resulting in fatal encephalitis is often associated with pruritus. In members of Suidae family (true pigs), the disease is characterised by central nervous system, respiratory system or reproductive system disorders that vary among different age groups. The important property of ADV is its ability to establish latency in pigs that survive an acute infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleman N, Quiroga MI, Lopez-Pena M et al (2001) Induction and inhibition of apoptosis by pseudorabies virus in the trigeminal ganglion during acute infection of swine. J Virol 75:469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allepuz A, Seaz M, Solymosi N et al (2009) The role of spatial factors in the success of an Aujeszky’s disease eradication programme in a high pig density area (Northeast Spain, 2003-2007). Prev Vet Med 91:153–160

    Article  CAS  PubMed  Google Scholar 

  • Alva-Valdes R (1981) Pseudorabies (Aujeszky’s disease): effect of vaccination on lesion development and immune response in challenged swine. Dissertation, Iowa State University

    Google Scholar 

  • Ambagala AP, Hinkley S, Srikumaran S (2000) An early pseudorabies virus protein down-regulates porcine MHC class I expression by inhibition of transporter associated with antigen processing (TAP). J Immunol 164:93–99

    Article  CAS  PubMed  Google Scholar 

  • Andries K, Pensaert MB, Pandeputte J (1978) Effects of experimental infection with pseudorabies (Aujeszky’s disease) on pigs with maternal immunity from vaccinated sows. Am J Vet Res 39:1282–1285

    CAS  PubMed  Google Scholar 

  • Babic N, Kluup B, Brack A et al (1996) Deletion of glycoprotein gE reduces the propagation of pseudorabies virus in the nervous system of mice after intranasal inoculation. Virology 219:279–284

    Article  CAS  PubMed  Google Scholar 

  • Balasch M, Pujols J, Segalés J (1998) Study of the persistence of Aujeszky’s disease (pseudorabies) virus in peripheral blood mononuclear cells and tissues of experimentally infected pigs. Vet Microbiol 62:171–183

    Article  CAS  PubMed  Google Scholar 

  • Baskerville A (1973) The histopathology of experimental pneumonia in pigs produced by Aujeszky’s disease virus. Res Vet Sci 14:223–228

    CAS  PubMed  Google Scholar 

  • Benndorf E, Hantschel H (1963) Zum Verhalten des Aujeszkyvirus bei veschiedenen Wasserstoffkonzentrationen. Arch Exp Vet Med 17:1357–1362

    CAS  Google Scholar 

  • Beran GW (1991) Transmission of Aujeszky’s disease virus. In: Proceedings of the 1st International Symposium on the Eradication of Pseudorabies (Aujeszky’s) Virus. St. Paul, Minnesota, pp 93–111

    Google Scholar 

  • Beran GW, Davies EB, Arambulo PV et al (1980) Persistence of pseudorabies virus in infected swine. J Am Vet Med Assoc 176:988–1000

    Google Scholar 

  • Biermann U, Herbst W, Schliesser T (1990) The persistence of bovine enterovirus and pseudorabies virus in liquid cattle manure at different storage temperatures. Berl Munch Tierarztl Wochenschr 103:88–90

    CAS  PubMed  Google Scholar 

  • Blaha T (1989) Aujeszky’s disease (pseudorabies). In: Blaha T (ed) Applied veterinary epidemiology. Elsevier, Amsterdam, pp 83–87

    Google Scholar 

  • Boadella M, Gortázar C, Vicente J et al (2012) Wild boar: an increasing concern for Aujeszky’s disease control in pigs? BMC Vet Res 8:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolin CA, Bolin SR, Kluge JP et al (1985) Pathologic effects of intrauterine deposition of pseudorabies virus on the reproductive tract of swine in early pregnancy. Am J Vet Res 46:1039–1042

    CAS  PubMed  Google Scholar 

  • Bøtner A (1991) Survival of Aujeszky’s disease virus in slurry at various temperatures. Vet Microbiol 29:225–235

    Article  PubMed  Google Scholar 

  • Bouma A, De Jong MC, Kimman TG (1997) The influence of maternal immunity on the transmission of pseudorabies virus and on the effectiveness of vaccination. Vaccine 15:287–294

    Article  CAS  PubMed  Google Scholar 

  • Bouma A, De Jong MDM, Kimman TG (1998) The influence of maternal immunity on the development of the in vitro lymphocyte proliferation response against pseudorabies virus in pigs. Res Vet Sci 64:167–171

    Google Scholar 

  • Brittle EE, Reynolds AE, Enquist LW (2004) Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol 78:12951–12963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brukman A, Enquist LW (2006) Suppression of the interferon-mediated innate immune response by pseudorabies virus. J Virol 80:6345–6356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AK (1989) Detection of pseudorabies virus transprits in trigeninal ganglia of latently infected swine. J Virol 63:2908–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook D, Hill HT, Kinker DR (1990) Efficacy of a killed gpX deleted pseudorabies virus vaccine. Can J Vet Res 54:438–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corn JL, Stallknecht DE, Mechlin NM et al (2004) Persistence of pseudorabies virus in feral swine populations. J Wildl Dis 40:307–310

    Article  PubMed  Google Scholar 

  • Cramer SD, Campbell GA, Njaa BL et al (2011) Pseudorabies virus infection in Oklahoma hunting dogs. J Vet Diagn Invest 23:915–923

    Article  PubMed  Google Scholar 

  • Davies EB, Beran G (1980) Spontaneous shedding of pseudorabies virus from a clinically recovered postparturient sow. J Am Vet Med Assoc 176:1345–1347

    CAS  PubMed  Google Scholar 

  • Davies EB, Beran GW (1981) Influence of environmental factors upon the survival of Aujeszky’s disease virus. Res Vet Sci 31:32–36

    CAS  PubMed  Google Scholar 

  • De Bruin MG, De Visser YE, Kimman TG et al (1998) Time course of the porcine cellular and humoral immune response in vivo against pseudorabies virus after inoculation and challenge: significante of in vitro antigenic restimulation. Vet Immunol Immunopathol 65:75–87

    Article  CAS  PubMed  Google Scholar 

  • De Regge N, Van Opdenbosch N, Nauwynck HJ et al (2010) Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS One 5(9):e13076. doi:10.1371/journal.pone.0013076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deruelle MJ, Van den Broeke C, Nauwynck HJ et al (2009) Pseudorabies virus US3- and UL49.5-dependent and -independent downregulation of MHC I cell surface expression in different cell types. Virology 395:172–181. doi:10.1016/j.virol.2009.09.019

    Article  CAS  PubMed  Google Scholar 

  • Díaz I, Cortey M, Darwich L et al (2012) Subclinical porcine circovirus type 2 infection does not modulate the immune response to an Aujeszky’s disease virus vaccine. Vet J 194:84–88. doi:10.1016/j.tvjl.2012.02.014

    Article  PubMed  CAS  Google Scholar 

  • Donaldson AI, Wardley RC, Martin S et al (1983) Experimental Aujeszky’s disease in pigs: excretion, survival and transmission of the virus. Vet Rec 113:490–494

    Article  CAS  PubMed  Google Scholar 

  • Durham PJK, Gow A, Poole WSH (1980) Survival of Aujeszky’s disease virus in frozen pig meat. Res Vet Sci 28:256–258

    CAS  PubMed  Google Scholar 

  • Dvorakova H, Prodelalova J, Reichelova M (2008) Comparative inactivation of Aujeszky’s disease virus, porcine teschovirus and vesicular stomatitis virus by chemical disinfectants. Vet Med (Praha) 53:236

    CAS  Google Scholar 

  • European Commission (2008). Commission Decision of 21 February 2008 on additional guarantees in intra-Community trade of pigs relating to Aujeszky’s disease and criteria to provide information on this disease 2008/185/EC: Official Journal of the European Communities L 316, 5–35

    Google Scholar 

  • Farrell MJ, Dobson AT, Feldman LT (1991) Herpes simplex virus latency associated transcript is a stable intron. Proc Natl Acad Sci U S A 88:790–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flori L, Rogel-Gaillard C, Cochet M et al (2008) Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection. BMC Genomics 9:123. doi:10.1186/1471-2164-9-123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuentes-González AM, Contreras-Paredes A, Manzo-Merino J et al (2013) The modulation of apoptosis by oncogenic viruses. Virol J 10:182. doi:10.1186/1743-422X-10-182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Siera J, Rozeboom DW, Straw BE et al (2001) Studies on survival of pseudorabies virus, Actinobacillus pleuropneumoniae, and Salmonella serovar Choleraesuis in composted swine carcasses. J Swine Health Prod 9:225–231

    Google Scholar 

  • Geenen KH, Favoreel W, Nauwynck HJ (2005) Higher resistance of porcine trigeminal ganglion neurons towards pseudorabies virus-induced cell death compared with other porcine cell types in vitro. J Gen Virol 86:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Gerdts V, Jons A, Makoschey B et al (1997) Protection of pigs against Aujeszky’s disease by DNA vaccination. J Gen Virol 78:2139–2146

    Article  CAS  PubMed  Google Scholar 

  • Glass C, McLean R, Katz J et al (1994) Isolation of pseudorabies (Aujeszky’s disease) virus from a Florida panther. J Wildl Dis 30:180–184

    Article  CAS  PubMed  Google Scholar 

  • Glorieux S (2009) Invasion of pseudorabies virus in porcine nasal respiratory mucosa explants. Dissertation, Ghent University

    Google Scholar 

  • Glorieux S, Favoreel HW, Steukers L et al (2011) A trypsin-like serine protease is involved in pseudorabies virus invasion through the basement membrane barrier of porcine nasal respiratory mucosa. Vet Res 42:58. doi:10.1186/1297-9716-42-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granzow H, Klupp BG, Mettenleiter TC (2004) The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 78:1314–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grauwet K, Cantoni C, Parodi M et al (2014) Modulation of CD112 by the alphaherpesvirus gD protein suppresses DNAM-1-dependent NK cell-mediated lysis of infected cells. Proc Natl Acad Sci U S A 111:16118–16123. doi:10.1073/pnas.1409485111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Shen S, Wang L et al (2010) Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 1:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegen B, Saalmuller A, Rottgen M et al (2004) Interferon-gamma response of PBMC indicates productive pseudorabies virus (PRV) infection in swine. Vet Immunol Immunopathol 102:389–397

    Article  CAS  PubMed  Google Scholar 

  • Hsu FS, Chu RM, Lee RC et al (1980) Placental lesions caused by pseudorabies virus in pregnant sows. J Am Vet Med Assoc 177:636–641

    CAS  PubMed  Google Scholar 

  • Huang C, Wu CY (2004) Characterization and expression of the pseudorabies virus early gene UL54. J Virol Methods 119:129–136

    Article  CAS  PubMed  Google Scholar 

  • Jacobs L, Mulder WA, Van Oirschot JT et al (1993) Deleting two amino acids in glycoprotein gI of pseudorabies virus decreases virulence and neurotropism for pigs, but does not affect immunogenicity. J Gen Virol 74:2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Kapitein LC, Hoogenraad CC (2011) Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 46:9–20

    Article  CAS  PubMed  Google Scholar 

  • Kimman TMG, De Bruin JJM, Voermans BPH et al (1995) Development and antigen specificity of the lymphoproliferation response of pigs to pseudorabies virus: dichotomy between secondary B- and T-cell response. Immunology 86:372–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick CM, Kanitz CL, McCrocklin SM (1980) Possible role of wild mammals in transmission of pseudorabies to swine. J Wildl Dis 16:601–614

    Article  CAS  PubMed  Google Scholar 

  • Kluge JP, Beran GW, Hill HT et al (1999) Pseudorabies (Aujeszky’s disease). In: Straw BE, D’allaire S, Mengeling WL, Taylor DJ (eds) Disease of Swine, 8th edn. Blackwell Science, Ames, pp 233–246

    Google Scholar 

  • Klupp BG, Fuchs W, Weiland E et al (1997) Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J Virol 71:7687–7695

    Google Scholar 

  • Klupp BG, Hengartner CJ, Mettenleiter T (2004) Complete, annotated sequence of the pseudorabies virus genome. J Virol 78:424–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp M, Granzow H, Fuchs W et al (2004) Simultaneous deletion of Pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment. J Virol 78:3024–3034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köppel C, Knopf L, Ryser MP et al (2007) Serosurveillance for selected infectious disease agents in wild boars (Sus scrofa) and outdoor pigs in Switzerland. Eur J Wildl Res 53:212–220

    Article  Google Scholar 

  • Koyuncu OO, Hogue IB, Enquist LW (2013a) Virus infections in the nervous system. Cell Host Microbe 13:379–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyuncu OO, Perlman DH, Enquist LW (2013b) Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe 13:54–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kritas SK, Pensaert MB, Mettenleiter TC (1994) Invasion and spread of single glycoprotein deleted mutants of Aujeszky’s disease virus (ADV) in the trigeminal nervous pathway of pigs after intranasal inoculation. Vet Microbiol 40:323–334

    Article  CAS  PubMed  Google Scholar 

  • Kukushkin S, Baborenko E, Baybikov T et al (2009) Seroprevalence of antibodies to main porcine infectious pathogens in wild boar in some regions of Russia. Acta Silvatica et Lignaria Hungarica 5:147–152

    Google Scholar 

  • Lari A, Lorenzi D, Nigrelli D et al (2006) Pseudorabies virus in European wild boar from Central Italy. J Wildl Dis 42:319–324

    Article  PubMed  Google Scholar 

  • Luxton GW, Lee JI, Haverlock-Moyns S et al (2006) The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J Virol 80:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Lager KM, Richt JA et al (2008) Development of real-time polymerase chain reaction assays for rapid detection and differentiation of wild-type pseudorabies and gene-deleted vaccine viruses. J Vet Diagn Invest 20:440–447

    Article  PubMed  Google Scholar 

  • Marcaccini A, López Peña M, Quiroga MI et al (2008) Pseudorabies virus infection in mink: a host-specific pathogenesis. Vet Immunol Immunopathol 124:264–273. doi:10.1016/j.vetimm.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  • McCaw MB, Osorio FA, Wheeler J et al (1997) Effect of maternally acquired Aujeszky’s disease (pseudorabies) virus-specific antibody in pigs on establishment of latency and seroconversion to differential glycoproteins after low dose challenge. Vet Microbiol 55:91–98

    Article  CAS  PubMed  Google Scholar 

  • McFerran JB, Dow C (1965) The distribution of the virus of Aujeszky’s disease (pseudorabies virus) in experimentally infected swine. Am J Vet Res 26:631–635

    CAS  PubMed  Google Scholar 

  • McFerran JB, Dow C, McCracken RM (1979) Experimental studies in weaned pigs with three vaccines against Aujeszky’s disease. Comp Immunol Microbiol Infect Dis 2:327–334

    Article  CAS  PubMed  Google Scholar 

  • McGregor S, Easterday BC, Kaplan AS et al (1985) Vaccination of swine with thymidine kinase-deficient mutants of pseudorabies virus. Am J Vet Res 46:1494–1497

    CAS  PubMed  Google Scholar 

  • Meier RK, Ruiz-Fons F, Ryser-Degiorgis M-P (2015) A picture of trends in Aujeszky’s disease virus exposure in wild boar in the Swiss and European contexts. BMC Vet Res 11:277. doi:10.1186/s12917-015-0592-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Mettenleiter TC (1994) Initiation and spread of α-herpesvirus infections. Trends Microbiol 2:2–4

    Article  CAS  PubMed  Google Scholar 

  • Mettenleiter TC (1996) Immunobiology of pseudorabies (Aujeszky’s disease). Vet Immunol Immunopathol 54:221–229

    Article  CAS  PubMed  Google Scholar 

  • Mettenleiter TC (2000) Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis – State of the art. Vet Res 31:99–115

    CAS  PubMed  Google Scholar 

  • Mettenleiter TC (2002) Brief overview on cellular virus receptors. Virus Res 82:3–8

    Article  CAS  PubMed  Google Scholar 

  • Mettenleiter TC, Ehlers B, Muller T et al (2012) In: Zimmerman JJ, Karriker LA, Ramírez A, Schwartz KJ, Stevenson GW (eds) Diseases of swine, 10th edn. Wiley-Blackwell Publishing, Ames, pp 421–455

    Google Scholar 

  • Mettenleiter TC, Klupp BG, Granzow H (2009) Herpesvirus assembly: an update. Virus Res 143:222–234

    Article  CAS  PubMed  Google Scholar 

  • Mettenleiter TC, Zsak L, Zuckermann F et al (1990) Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. J Virol 64:278–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikulska-Skupień E, Szweda W, Procajło Z (2005) Evaluation of specific humoral immune response in pigs vaccinated intradermally with deleted Aujeszky’s disease vaccine and challenged with virulent strain of Herpesvirus suis type 1. Pol J Vet Sci 8:11–16

    PubMed  Google Scholar 

  • Miller LC, Zanella EL, Waters WR et al (2010) c. Clin Vaccine Immunol 17:728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miry C, Pensaert MB (1989) Sites of virus replication in the genital organs of boars inoculated in the cavum vaginale with pseudorabies virus. Am J Vet Res 50:345–348

    CAS  PubMed  Google Scholar 

  • Miry C, Pensaert MB, Bonte P et al (1987) Effect of intratesticular inoculation with Aujeszky’s disease virus on genital organs of boars. Vet Microbiol 14:355–363

    Article  CAS  PubMed  Google Scholar 

  • Montagnaro S, Sasso S, De Martino L et al (2010) Prevalence of antibodies to selected viral and bacterial pathogens in wild boar (Sus scrofa) in Campania Region, Italy. J Wildl Dis 46:316–319

    Article  PubMed  Google Scholar 

  • Morrow WEM, O’Quinn P, Barker J et al (1995) Composting as a suitable technique for managing swine mortalities. Swine Health Prod 3:236–243

    Google Scholar 

  • Müller T, Hahn EC, Tottewitz F et al (2011) Pseudorabies virus in wild swine: a global perspective. Arch Virol 156:1691–1705. doi:10.1007/s00705-011-1080-2

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Teuffert J, Staubach C et al (2005) Long-term studies on maternal immunity for Aujeszky’s disease and classical swine fever in wild boar piglets. J Vet Med B Infect Dis Vet Public Health 52:432–436

    Article  PubMed  Google Scholar 

  • Müller TF, Teuffert J, Zellmer R et al (2001) Experimental infection of European wild boars and domestic pigs with pseudorabies viruses with differing virulence. Am J Vet Res 62:252–258

    Article  PubMed  Google Scholar 

  • Narita M, Haritani M, Moriwaki M et al (1985) Pseudorabies virus in dexamethasone-treated pigs. Vet Pathol 22:417–419

    Article  CAS  PubMed  Google Scholar 

  • Nauwynck H, Glorieux S, Favoreel H et al (2007) Cell biological and molecular characteristics of pseudorabies virus infections in cell cultures and in pigs with emphasis on the respiratory tract. Vet Res 38:229–241

    Article  CAS  PubMed  Google Scholar 

  • Nauwynck HJ, Pensaert MB (1995) Cell-free and cell-associated viremia in pigs after oronasal infection with Aujeszky’s disease virus. Vet Microbiol 43:307–314

    Article  Google Scholar 

  • Ndjamen B, Farley AH, Lee T et al (2014) The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface. PLoS Pathog 10:e1003961. doi:10.1371/journal.ppat.100396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nixdorf R, Schmidt J, Karger A et al (1999) Infection of Chinese hamster ovary cells by pseudorabies virus. J Virol 73:8019–8026

    CAS  PubMed  PubMed Central  Google Scholar 

  • OIE Terrestrial Manual (2012) Aujeszky’s disease, Chapter 2.1.2. http://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.01.02_AUJESZKYS_DIS.pdf

  • Paluszak Z, Lipowski A, Ligocka A (2012) Survival rate of Suid herpesvirus (SuHV-1, Aujeszky’s disease virus, ADV) in composted sewage sludge. Pol J Vet Sci 15:51–54

    CAS  PubMed  Google Scholar 

  • Pan Z, Zhang C, Ding J et al (2001) Thymidine kinase gene mutation leads to reduced virulence of pseudorabies virus. Chin Sci Bull 46:1972–1975

    Article  CAS  Google Scholar 

  • Pannwitz G, Freuling C, Denzin N et al (2012) A long-term serological survey on Aujeszky’s disease virus infections in wild boar in East Germany. Epidemiol Infect 140:348–358

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K, Bevins SN, Baroch JA et al (2013) Pseudorabies in feral swine in the United States, 2009–2012. J Wildl Dis 49:709–713

    Article  PubMed  Google Scholar 

  • Pensaert MB, Kluge JB (1989) Pseudorabies virus (Aujeszky’s disease). In: Pensaert MB (ed) Virus infection of porcine. Elsevier, Amsterdam, pp 39–64

    Google Scholar 

  • Pensaert MB, Miry C, Biront P et al (1987) Evolution of Aujeszky’s disease in Belgium (1974-1987). Tijdschr Diergeneeskd 56:425–432

    Google Scholar 

  • Pensaert MB, Vandeputte J, Andries K (1982) Oronasal challenge of fattening pigs after vaccination with an inactivated Aujeszky’s disease vaccine. Res Vet Sci 32:12–16

    CAS  PubMed  Google Scholar 

  • Pol JMA (1990) Interferons affect the morphogenesis and virulence of pseudorabies virus. Dissertation, Rijksuniversiteit

    Google Scholar 

  • Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69:462–500. doi:10.1128/MMBR.69.3.462-500.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomorska-Mól M, Czyżewska-Dors E, Kwit K et al (2015a) Immune response in pigs treated with therapeutic doses of enrofloxacin at the time of vaccination against Aujeszky’s disease. Res Vet Sci 100:68–74. doi:10.1016/j.rvsc.2015.04.003

    Article  PubMed  CAS  Google Scholar 

  • Pomorska-Mól M, Czyżewska-Dors E, Kwit K et al (2015b) Ceftiofur hydrochloride affects the humoral and cellular immune response in pigs after vaccination against swine influenza and pseudorabies. BMC Vet Res 11:268. doi:10.1186/s12917-015-0586-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pomorska-Mól M, Kwit K, Markowska-Daniel I et al (2014) The effect of doxycycline treatment on the postvaccinal immune response in pigs. Toxicol Appl Pharmacol 278:31–38. doi:10.1016/j.taap.2014.04.006

    Article  PubMed  CAS  Google Scholar 

  • Pomorska-Mól M, Markowska-Daniel I (2010a) Interferon-γ secretion and proliferative responses of peripheral blood mononuclear cells after vaccination of pigs against Aujeszky’s disease in the presence of maternal immunity. FEMS Immunol Med Microbiol 58:405–411. doi:10.1111/j.1574-695X.2010.00651.x

    Article  PubMed  CAS  Google Scholar 

  • Pomorska-Mól M, Markowska-Daniel I, Pejsak Z (2010b) Evaluation of humoral and antigen-specific T-cell responses after vaccination of pigs against pseudorabies in the presence of maternal antibodies. Vet Microbiol 144:45–454. doi:10.1016/j.vetmic.2010.01.015

    Article  CAS  Google Scholar 

  • Prieto J, Hernandez AMM, Tabares E (1991) Loss of pseudorabies virus thymidine kinase activity due to a single base mutation and amino acid substitution. J Gen Virol 72:1435–1439

    Article  PubMed  Google Scholar 

  • Rauh I, Mettenleiter TC (1991) Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J Virol 65:5348–5356

    Google Scholar 

  • Ren Y, Li G, Su D et al (2012) Characterization of pseudorabies viruses produced in mammalian cells by viral genome transfection. Afr J Biotechnol 11:4098–4102

    Google Scholar 

  • Roizman B, Pellet PE (2001) The family herpesviridae: a brief introduction. In: Knipe DM, Howley PM (eds) Fields virology, vol 2, 4th edn. Lippincott William&Wilkins, Philadelphia, pp 2381–2397

    Google Scholar 

  • Romero CH, Meade PN, Homer BL (2003) Potential sites of virus latency associated with indigenous pseudorabies viruses in feral swine. J Wildl Dis 39:567–575

    Article  PubMed  Google Scholar 

  • Rziha HJ, Mettenleiter TC, Ohlinger V et al (1986) Herpesvirus (pseudorabies virus) latency in swine: occurrence and physical state of viral DNA in neural tissues. Virology 155:600–613

    Article  CAS  PubMed  Google Scholar 

  • Sabo A, Rajcani J, Blaskovic D (1969) Studies on the pathogenesis of Aujeszky’s disease virus. III. The distribution of virulent virus in piglets after intranasal infection. Acta Virol 13:407–714

    CAS  PubMed  Google Scholar 

  • Sakano T, Shibata I, Samegai Y et al (1993) Experimental pneumonia of pigs infected with Aujeszky’s disease virus and Actinobacillus pleuropneumoniae. J Vet Med Sci 55:575–579

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum MA, Beran GW, Murphy DP (1990a) Pseudorabies virus latency and reactivation in vaccinated swine. Am J Vet Res 51:334–338

    CAS  PubMed  Google Scholar 

  • Schoenbaum MA, Zimmerman JJ, Beran GW et al (1990b) Survival of pseudorabies virus in aerosol. Am J Vet Res 51:331–333

    CAS  PubMed  Google Scholar 

  • Sedlak K, Bartova E, Machova J (2008) Antibodies to selected viral disease agents in wild boars from the Czech Republic. J Wildl Dis 44:777–780

    Article  PubMed  Google Scholar 

  • Serena MS, Metz GE, Panei CJ et al (2015) Development of an AGID based on baculovirus expressed Pseudorabies virus glycoprotein B. In: Front Immunol Conference Abstract: ImmunoColombia 2015 - 11th Congress of the Latin American Association of Immunology-10o. Congreso de la Asociación Colombiana de Alergia, Asma e Inmunología. doi:10.3389/conf.fimmu.2015.05.00236

  • Shibata I, Okada M, Urono K et al (1998) Experimental dual infection of cesarean-derived, colostrum-deprived pigs with Mycoplasma hyopneumoniae and pseudorabies virus. J Vet Med Sci 60:295–300

    Article  CAS  PubMed  Google Scholar 

  • Shibata I, Yazawa S, Ono M et al (2003) Experimental dual infection of specific pathogen-free pigs with porcine reproductive and respiratory syndrome virus and pseudorabies virus. J Vet Med B Infect Dis Vet Public Health 50:14–19

    Article  CAS  PubMed  Google Scholar 

  • Smith GA, Gross SP, Enquist LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spear PG, Eisenberg RJ, Cohen GH (2000) Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275:1–8.

    Google Scholar 

  • Szweda W, Lipowski A, Ciecierski H et al (1998) European wild boar (Sus scrofa L.) as a reservoir of Herpesvirus suis 1. Med Weter 54:541–544

    Google Scholar 

  • Tanaka S, Mannen K (2003) Effect of mild stress in mice latently infected pseudorabies virus. Exp Anim 52:383–386

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Mannen K (2008) Pregnancy and parturition of mice latently infected with Pseudorabies virus. Exp Anim 57:149–152

    Article  CAS  PubMed  Google Scholar 

  • Tenhagen BA, Bollwahn W, Seidler MJ (1995) Vaccination trial against Aujeszky’s disease: development of antibodies in sow serum, colostrum and the serum of suckling piglets and the influence of maternal antibodies on the serologic vaccination reaction of weaned piglets. Dtsch Tierärztl Wschr 102:86–90

    CAS  Google Scholar 

  • The Center for Food Security and Public Health (2006) Iowa State University. http://www.cfsph.iastate.edu/Factsheets/pdfs/aujeszkys_disease.pdf

  • Thomson BJ (2001) Viruses and apoptosis. Int J Exp Pathol 82:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong W, Liu F, Zheng H et al (2015) Emergence of a pseudorabies virus variant with increased virulence to piglets. Vet Microbiol 181(3-4):236–240. doi:10.1016/j.vetmic.2015.09.021

    Article  PubMed  Google Scholar 

  • Turner C, Williams SM, Cumby TR (2000) The inactivation of foot and mouth disease, Aujeszky’s disease and classical swine fever viruses in pig slurry. J Appl Microbiol 89:760–767

    Article  CAS  PubMed  Google Scholar 

  • Umbach JL, Kramer MF, Jurak I et al (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • USDA (2008) Pseudorabies (Aujeszky’s disease) and its eradication. Animal and plant health inspection service. Technical Bulletin No. 1923. https://www.aasv.org/documents/pseudorabiesreport.pdf

  • Van De Walle G (2003) Pseudorabies virus-specific antibodies mask infected monocytes from immune recognition, induce a quiescent infection, and allow virus transmission to endothelial cells. Dissertation, Gent University

    Google Scholar 

  • Van Rooij EM, de Bruin MG, de Visser YE et al (2004) Vaccine-induced T cell-mediated immunity plays a critical role in early protection against pseudorabies virus (suid herpesvirus type 1) infection in pigs. Vet Immunol Immunopathol 99:113–125

    Article  CAS  PubMed  Google Scholar 

  • Van Rooij EM, Haagmans BL, Glansbeek HL et al (2000) A DNA vaccine coding for glycoprotein B of pseudorabies virus induces cell-mediated immunity in pigs and reduces virus excretion early after infection. Vet Immunol Immunopathol 74:121–136

    Article  CAS  PubMed  Google Scholar 

  • Vannier P, Cariolet R (1991) Vaccination of pigs against Aujeszky’s disease by the intradermal route using live attenuated and inactivated virus vaccines. Vet Microbiol 26:11–23

    Article  CAS  PubMed  Google Scholar 

  • Vengust G, Valencak Z, Bidovec A (2006) A serological survey of selected pathogens in wild boar in Slovenia. J Vet Med Ser B Infect Dis Vet Public Health 53:24–27

    Article  CAS  Google Scholar 

  • Verpoest S, Cay AB, Bertrand O et al (2014) Isolation and characterization of pseudorabies virus from a wolf (Canis lupus) from Belgium. Eur J Wildl Res 60:149–153

    Article  Google Scholar 

  • Vicente-Rubiano M, Martınez-Lopez B, Sanchez-Vizcaıno F et al (2014) A new approach for rapidly assessing the risk of Aujeszky’s Disease reintroduction into a disease-free Spanish territory by analysing the movement of live pigs and potential contacts with wild boar. Transbound Emerg Dis 61:350–361. doi:10.1111/tbed.12041

    Article  CAS  PubMed  Google Scholar 

  • Viejo-Borbolla A, Munoz A, Tabares E et al (2010) Glycoprotein G from pseudorabies virus binds to chemokines with high affinity and inhibits their function. J Gen Virol 91:23–31

    Article  CAS  PubMed  Google Scholar 

  • Vilnis A, Sussman MD, Thacker BJ et al (1998) Vaccine genotype and route of administration affect pseudorabies field virus latency load after challenge. Vet Microbiol 62:81–96

    Article  CAS  PubMed  Google Scholar 

  • Visser N (1997) Vaccination strategies for improving the efficacy of programs to eradicate Aujeszky’s disease virus. Vet Microbiol 55:61–74

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Xiao Y, Yang Q et al (2015) Construction of a gE-deteted psudorabies virus and its efficacy to the new-emerging variant PRV challenge in the form of killed vaccine. Biomed Res Int 2015:684945. doi:10.1155/2015/684945

    PubMed  PubMed Central  Google Scholar 

  • White AK, Ciacci-Zanella J, Galeota-Wheeler J et al (1994) Detection of latent pseudorabies virus infections. In: 37th Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians. Grand Rapids

    Google Scholar 

  • Wiśniewski J, Siemionek J (1988) Chosen problems of immunoprophylaxis of Aujeszky’s disease in swine. Med Weter 44:81–84

    Google Scholar 

  • Wittmann G (1986) Aujeszky’s disease. Rev Sci Tech Off Int Epiz 5:959–977

    Article  Google Scholar 

  • Wittmann G (1991) Spread and control of Aujeszky’s disease (AD). Comp Immunol Microbial Infect Dis 14:165–173

    Article  CAS  Google Scholar 

  • Wittmann G, Bartenbach G, Jakubik J (1976) Cell-mediated immunity in Aujeszky’s virus infected pigs. Arch Virol 50:215–222

    Article  CAS  PubMed  Google Scholar 

  • Wittmann G, Jakubik J (1979) Colostral immunity in piglets from sows vaccinated with inactivated Aujeszky disease virus vaccine. Arch Virol 60:33–42

    Article  CAS  PubMed  Google Scholar 

  • Wittmann G, Jakubik J, Ahl R (1980) Multiplication and distribution of Aujeszky’s disease (pseudorabies) virus in vaccinated and non-vaccinated pigs after intranasal infection. Arch Virol 66:227–240

    Article  CAS  PubMed  Google Scholar 

  • Wittmann G, Rziha HJ (1989) Aujeszky’s disease (pseudorabies) in pigs. In: Wittmann G (ed) Herpesvirus diseases of cattle, horses, and pigs. Kluwer Academic Publ, Boston/Dordrecht/London, pp 230–325

    Chapter  Google Scholar 

  • Yong T, Huanchun C, Shao-Bo X et al (2005) Development of a latex agglutination test using the major epitope domain of glycoprotein E of pseudorabies virus expressed in E. coli to differentiate between immune responses in pigs naturally infected or vaccinated with pseudorabies virus. Vet Res Commun 29:487–497

    Article  PubMed  Google Scholar 

  • Yoon HA, Aleyas AG, George JA et al (2006) Differential segregation of protective immunity by encoded antigen in DNA vaccine against pseudorabies virus. Immunol Cell chain reaction assay for Pseudorabies virus surveillance purposes. J Vet Diagn Invest 24:739–745

    Google Scholar 

  • Zaichick SV, Bohannon KP, Hughes A et al (2013) The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 13:193–203

    Article  CAS  PubMed  Google Scholar 

  • Zanella EL, Miller LC, Lager KM et al (2012) Evaluation of a real-time polymerase chain reaction assay for Pseudorabies virus surveillance purposes. J Vet Diagn Invest 24:739–745. doi:10.1177/1040638712447279

    Article  PubMed  Google Scholar 

  • Zanin E, Capua I, Casaccia C et al (1997) Isolation and characterization of Aujeszky’s disease virus in captive brown bears from Italy. J Wildl Dis 33:632–634

    Article  CAS  PubMed  Google Scholar 

  • Zuckermann FA (2000) Aujeszky’s disease virus: opportunities and challenges. Vet Res 31:121–131

    CAS  PubMed  Google Scholar 

  • Zuckermann FA, Husmann RJ, Schwartz R (1998) Interleukin-12 enhances the virus-specific interferon gamma response of pigs to inactivated pseudorabies virus vaccine. Vet Immunol Immunopathol 63:57–67

    Article  CAS  PubMed  Google Scholar 

  • Zupancic Z, Jukic B, Lojkic M et al (2002) Prevalence of antibodies to classical swine fever, Aujeszky’s disease, porcine reproductive and respiratory syndrome, and bovine viral diarrhoea viruses in wild boars in Croatia. J Vet Med B Infect Dis Vet Public Health 49:253–256

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Pomorska Mól .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Czyżewska Dors, E., Pomorska Mól, M. (2017). Aujeszky’s Disease. In: Bayry, J. (eds) Emerging and Re-emerging Infectious Diseases of Livestock. Springer, Cham. https://doi.org/10.1007/978-3-319-47426-7_10

Download citation

Publish with us

Policies and ethics