Skip to main content

Assisting the Diagnosis of Neurodegenerative Disorders Using Principal Component Analysis and TensorFlow

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

Neuroimaging data provides a valuable tool to assist the diagnosis of neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). During last years many research efforts have focused on the development of computer systems that automatically analyze neuroimaging data and allow improving the diagnosis of those diseases. This field has benefited from modern machine learning techniques, which provide a higher generalization ability, however the high dimensionality of the data is still a challenge and there is room for improvement. In this work we demonstrate a computer system based on Principal Component Analysis and TensorFlow, the machine learning library recently released by Google. The proposed system is able to successfully separate AD or PD patients from healthy subjects, as well as distinguishing between PD and other parkinsonian syndromes. The obtained results suggest that TensorFlow is a suitable environment to classify neuroimaging data and can help to improve the diagnosis of AD and Parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. TensorFlow - google’s latest machine learning system, open sourced for everyone. http://googleresearch.blogspot.com.es/2015/11/tensor-googles-latestmachine_9.html

  2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/, software available from tensorow.org

  3. Bach, J., Ziegler, U., Deuschl, G., Dodel, R., Doblhammer-Reiter, G.: Projected numbers of people with movement disorders in the years 2030 and 2050. Mov. Disord. 26(12), 2286–2290 (2011)

    Article  Google Scholar 

  4. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 3(3), 186–191 (2007)

    Article  Google Scholar 

  5. Duin, R.: Classifiers in almost empty spaces. In: Proceedings of 15th International Conference on Pattern Recognition, vol. 2, pp. 1–7 (2000)

    Google Scholar 

  6. Foster, N.L., Heidebrink, J.L., Clark, C.M., Jagust, W.J., Arnold, S.E., Barbas, N.R., DeCarli, C.S., Turner, R.S., Koeppe, R.A., Higdon, R., Minoshima, S.: FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130(10), 2616–2635 (2007)

    Article  Google Scholar 

  7. Fougère, C.I., Pöpperl, G., Levin, J., Wängler, B., Böning, G., Uebleis, C., Cumming, P., Bartenstein, P., Bötzel, K., Tatsch, K.: The value of the dopamine D2/3 receptor ligand 18F-Desmethoxyfallypride for the differentiation of idiopathic and nonidiopathic parkinsonian syndromes. J. Nucl. Med. 51(4), 581–587 (2010)

    Article  Google Scholar 

  8. Friston, K., Büchel, C.: Functional connectivity: eigenimages and multivariate analyses. In: Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (eds.) Statistical Parametric Mapping, Chap. 37, pp. 492–507. Academic Press, London (2007)

    Chapter  Google Scholar 

  9. Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., Penny, W.D.: Statistical Parametric Mapping: The Analysis of Functional Brain Images, 1st edn. Academic Press, Amsterdam, Boston (2006)

    Google Scholar 

  10. Gilman, S., Wenning, G.K., Low, P.A., Brooks, D.J., Mathias, C.J., Trojanowski, J.Q., Wood, N.W., Colosimo, C., Dürr, A., Fowler, C.J., Kaufmann, H., Klockgether, T., Lees, A., Poewe, W., Quinn, N., Revesz, T., Robertson, D., Sandroni, P., Seppi, K., Vidailhet, M.: Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9), 670–676 (2008)

    Article  Google Scholar 

  11. Hughes, A.J., Daniel, S.E., Ben-Shlomo, Y., Lees, A.J.: The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125(4), 861–870 (2002)

    Article  Google Scholar 

  12. Illán, I.A., Górriz, J.M., Ramírez, J., Segovia, F., Jiménez-Hoyuela, J.M., Lozano, S.J.O.: Automatic assistance to parkinson’s disease diagnosis in DaTSCAN SPECT imaging. Med. Phys. 39(10), 5971–5980 (2012)

    Article  Google Scholar 

  13. Koch, W., Radau, P.E., Hamann, C., Tatsch, K.: Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J. Nucl. Med. 46(7), 1109–1118 (2005)

    Google Scholar 

  14. Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R.C., Goetz, C.G., Golbe, L.I., Grafman, J., Growdon, J.H., Hallett, M., Jankovic, J., Quinn, N.P., Tolosa, E., Zee, D.S.: Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47(1), 1–9 (1996)

    Article  Google Scholar 

  15. Lopez, M., Ramirez, J., Gorriz, J., Salas-Gonzalez, D., Alvarez, I., Segovia, F., Puntonet, C.G.: Automatic tool for Alzheimer’s disease diagnosis using PCA and bayesian classification rules. Electron. Lett. 45(8), 389–391 (2009)

    Article  Google Scholar 

  16. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a timely dataflow system. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP 2013, pp. 439–455. ACM, New York (2013)

    Google Scholar 

  17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Saxena, P., Pavel, D.G., Quintana, J.C., Horwitz, B.: An automatic threshold-based scaling method for enhancing the usefulness of Tc-HMPAO SPECT in the diagnosis of Alzheimer’s disease. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 623–630. Springer, Heidelberg (1998). doi:10.1007/BFb0056248

    Chapter  Google Scholar 

  19. Segovia, F., Górriz, J.M., Ramírez, J., Salas-Gonzalez, D., Álvarez, I., López, M., Chaves, R.: A comparative study of feature extraction methods for the diagnosis of Alzheimer’s disease using the ADNI database. Neurocomputing 75(1), 64–71 (2012)

    Article  Google Scholar 

  20. Segovia, F., Bastin, C., Salmon, E., Górriz, J.M., Ramírez, J., Phillips, C.: Combining PET images and neuropsychological test data for automatic diagnosis of Alzheimer’s disease. PLoS ONE 9(2), e88687 (2014)

    Article  Google Scholar 

  21. Towey, D.J., Bain, P.G., Nijran, K.S.: Automatic classification of 123I-FP-CIT (DaTSCAN) SPECT images. Nucl. Med. Commun. 32(8), 699–707 (2011)

    Article  Google Scholar 

  22. Trambaiolli, L.R., Lorena, A.C., Fraga, F.J., Kanda, P.A.M., Anghinah, R., Nitrini, R.: Improving Alzheimer’s disease diagnosis with machine learning techniques. Clin. EEG Neurosci. 42(3), 160–165 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by and the MINECO under the TEC2012-34306 and TEC2015-64718-R projects and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía under the Excellence Projects P09-TIC-4530 and P11-TIC-7103 and a Talent Hub project granted to FS (project approved by the Andalucía Talent Hub Program launched by the Andalusian Knowledge Agency, co-funded by the European Union’s Seventh Framework Program, Marie Sklodowska-Curie actions (COFUND Grant Agreement no 291780) and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín Segovia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Segovia, F., García-Pérez, M., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J. (2017). Assisting the Diagnosis of Neurodegenerative Disorders Using Principal Component Analysis and TensorFlow. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics