Skip to main content

Mobile Wireless System for Outdoor Air Quality Monitoring

  • Conference paper
  • First Online:
International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 (SOCO 2016, CISIS 2016, ICEUTE 2016)

Abstract

Outdoor air quality monitoring plays crucial role on preventing environment pollution. The idea of use of unmanned aerial vehicles (UAV) in this area is of great interest cause they provide more flexibility than ground systems. The main focus of this work is to propose alternative, competitive outdoor wireless monitoring system that will allow to collect pollution data, detect and locate leakage places within petrol, gas and refinery stations or in hard to reach places. This system should be lightweight, compact, could be mounted on any UAV, operate in GPS denied environments and should be easily deployed and piloted by operator with minimal risk to his health. This paper presents the system, configured on a commercial UAV AR.Drone, embedding gas sensor to it, where as a ground station stands Robot Operation System. Conducted first stage experiments proved capabilities of our system to operate in real-world conditions and serve as a basis to carry out further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Edokpolo, B., Yu, Q.J., Connell, D.: Health risk characterization for exposure to benzene in service stations and petroleum refineries environments using human adverse response data. Toxicol. Rep. 2, 917–927 (2015)

    Article  Google Scholar 

  2. Terrés, I.M.M., Miñarro, M.D., Ferradas, E.G., Caracena, A.B., Rico, J.B.: Assessing the impact of petrol stations on their immediate surroundings. J. Environ. Manage. 91(12), 2754–2762 (2010)

    Article  Google Scholar 

  3. Correa, S.M., Arbilla, G., Marques, M.R.C., Oliveira, K.M.P.G.: The impact of BTEX emissions from gas stations into the atmosphere. Atmos. Pollut. Res. 3(2), 163–169 (2012)

    Article  Google Scholar 

  4. Kountouriotis, A., Aleiferis, P.G., Charalambides, A.G.: Numerical investigation of voc levels in the area of petrol stations. Sci. Total Environ. 470, 1205–1224 (2014)

    Article  Google Scholar 

  5. Sairat, T., Homwuttiwong, S., Homwutthiwong, K., Ongwandee, M.: Investigation of gasoline distributions within petrol stations: spatial and seasonal concentrations, sources, mitigation measures, and occupationally exposed symptoms. Environ. Sci. Pollut. Res. 22(18), 13870–13880 (2015)

    Article  Google Scholar 

  6. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles. Springer Publishing Company, Incorporated, Dordrecht (2014)

    MATH  Google Scholar 

  7. Lozano, J., Suárez, J.I., Arroyo, P., Manuel, J.: Wireless sensor network for indoor air quality monitoring. Chem. Eng. 30, 319–324 (2012)

    Google Scholar 

  8. Yu, T.-C., Lin, C.-C., Chen, C.-C., Lee, W.-L., Lee, R.-G., Tseng, C.-H., Liu, S.-P.: Wireless sensor networks for indoor air quality monitoring. Med. Eng. Phys. 35(2), 231–235 (2013)

    Article  Google Scholar 

  9. Li, J., Xin, J., Li, M., Lai, B., Ma, Q.: Wireless sensor network for indoor air quality monitoring. Sens. Transducers 172(6), 86–90 (2014)

    Google Scholar 

  10. Bartholmai, M., Neumann, P.: Micro-drone for gas measurement in hazardous scenarios via remote sensing. In: Proceedings of 6th WSEAS International Conference on Remote Sensing (REMOTE 2010) (2010)

    Google Scholar 

  11. Neumann, P., Bartholmai, M., Schiller, J.H., Wiggerich, B., Manolov, M.: Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources: a new approach to determine wind speed and direction. In: 2010 IEEE International Workshop on Robotic and Sensors Environments (ROSE), pp. 1–6. IEEE (2010)

    Google Scholar 

  12. Neumann, P.P., Bennetts, V.H., Lilienthal, A.J., Bartholmai, M., Schiller, J.H.: Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv. Robot. 27(9), 725–738 (2013)

    Article  Google Scholar 

  13. Neumann, P., Asadi, S., Schiller, J.H., Lilienthal, A.J., Bartholmai, M.: An artificial potential field based sampling strategy for a gas-sensitive micro-drone. In: IROS Workshop on Robotics for Environmental Monitoring (WREM), pp. 34–38 (2011)

    Google Scholar 

  14. Rossi, M., Brunelli, D., Adami, A., Lorenzelli, L., Menna, F., Remondino, F.: Gas-drone: portable gas sensing system on uavs for gas leakage localization. In: 2014 IEEE SENSORS, pp. 1431–1434. IEEE (2014)

    Google Scholar 

  15. Croizé, P., Archez, M., Boisson, J., Roger, T., Monsegu, V.: Autonomous measurement drone for remote dangerous source location mapping. Int. J. Environ. Sci. Dev. 6(5), 391 (2015)

    Article  Google Scholar 

  16. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007, ISMAR 2007, pp. 225–234. IEEE (2007)

    Google Scholar 

  17. Engel, J., Sturm, J., Cremers, D.: Accurate figure flying with a quadrocopter using onboard visual and inertial sensing. In: IMU, vol. 320, p. 240 (2012)

    Google Scholar 

  18. Liu, Z., Li, Z., Liu, B., Xinwen, F., Ioannis, R., Ren, K.: Rise of mini-drones: applications and issues. In: Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing, pp. 7–12. ACM (2015)

    Google Scholar 

  19. Parrot.: Ar.drone 1.0 (2010). http://ardrone2.parrot.com/support-ardrone-1/

  20. Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-Drone as a platform for robotic research and education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21975-7_16

    Chapter  Google Scholar 

  21. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  22. Monajjemi, M., et al.: Ardrone autonomy: a ROS driver for AR.Drone 1.0 & 2.0 (2015). http://github.com/AutonomyLab/ardrone_autonomy

  23. Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H.: A survey on gas sensing technology. Sensors 12(7), 9635–9665 (2012)

    Article  Google Scholar 

  24. Mercado, D.A., Castillo, P., Lozano, R.: Quadrotor’s trajectory tracking control using monocular vision navigation. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 844–850. IEEE (2015)

    Google Scholar 

  25. Nguyen, T., Mann, G.K.I., Gosine, R.G., Vardy, A.: Appearance-based visual-teach-and-repeat navigation technique for micro aerial vehicle. J. Intell. Robot. Syst. pp. 1–24 (2016). doi:10.1007/s10846-015-0320-1

  26. Li, P., Garratt, M., Lambert, A., Lin, S.: Metric sensing and control of a quadrotor using a homography-based visual inertial fusion method. Robot. Auton. Syst. 76, 1–14 (2016)

    Article  Google Scholar 

  27. Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot. Auton. Syst. 62(11), 1646–1656 (2014)

    Article  Google Scholar 

  28. Daugaard, M.: Semi-autonom indendørs navigation for luftbåren robot. Ph.D. thesis, Aarhus Universitet, Datalogisk Institut (2012)

    Google Scholar 

  29. Thyregod, T., Daugaard, M.: Navigation for robots with wifi and cv (2012)

    Google Scholar 

  30. Nosaari. Ardudrone (2011). https://code.google.com/archive/p/ardudrone/

  31. Gunnarsson, G.: Udp client/server system (2012). https://www.abc.se/m6695/udp.html

Download references

Acknowledgements

This work comes under the framework of the project IT874-13 granted by the Basque Regional Government. The authors would like to thank the Erasmus Mundus Action 2 ACTIVE fellowship program, and the participating colleagues from the SUPREN research group, Environment and Chemical Engineering Department of the University of the Basque Country.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Koval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Koval, A., Irigoyen, E. (2017). Mobile Wireless System for Outdoor Air Quality Monitoring. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016 2016 2016. Advances in Intelligent Systems and Computing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-47364-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47364-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47363-5

  • Online ISBN: 978-3-319-47364-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics