Skip to main content

Prediction of Seizure Spread Network via Sparse Representations of Overcomplete Dictionaries

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9919))

Included in the following conference series:

Abstract

Epilepsy is one of the most common brain disorders and affect people of all ages. Resective surgery is currently the most effective overall treatment for patients whose seizures cannot be controlled by medications. Seizure spread network with secondary epileptogenesis are thought to be responsible for a substantial portion of surgical failures. However, there is still considerable risk of surgical failures for lacking of priori knowledge. Cortico-cortical evoked potentials (CCEP) offer the possibility of understanding connectivity within seizure spread networks to know how seizure evolves in the brain as it measures directly the intracranial electric signals. This study is one of the first works to investigate effective seizure spread network modeling using CCEP signals. The previous unsupervised brain network connectivity problem was converted into a classical supervised sparse representation problem for the first time. In particular, we developed an effective network modeling framework using sparse representation of over-determined features extracted from extensively designed experiments to predict real seizure spread network for each individual patient. The experimental results on five patients achieved prediction accuracy of about 70 %, which indicates that it is possible to predict seizure spread network from stimulated CCEP networks. The developed CCEP signal analysis and network modeling approaches are promising to understand network mechanisms of epileptogenesis and have a potential to render clinicians better epilepsy surgical decisions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  3. Deco, G., Tononi, G., Boly, M., Kringelbach, M.L.: Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16(7), 430–439 (2015)

    Article  Google Scholar 

  4. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  5. Donoho, D.L., Tsaig, Y.: Fast solution of-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Enatsu, R., Piao, Z., OConnor, T., Horning, K., Mosher, J., Burgess, R., Bingaman, W., Nair, D.: Cortical excitability varies upon ictal onset patterns in neocortical epilepsy: a cortico-cortical evoked potential study. Clin. Neurophysiol. 123(2), 252–260 (2012)

    Article  Google Scholar 

  7. Friston, K.J.: Functional and effective connectivity: a review. Brain Connect. 1(1), 13–36 (2011)

    Article  MathSciNet  Google Scholar 

  8. Guan, Z.H., Liu, F., Li, J., Wang, Y.W.: Chaotification of complex networks with impulsive control. Chaos: Interdisc. J. Nonlinear Sci. 22(2), 023137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Snead, O.C.: Basic mechanisms of generalized absence seizures. Annals. Neurol. 37(2), 146–157 (1995)

    Article  Google Scholar 

  10. Jefferys, J.G.: Advances in understanding basic mechanisms of epilepsy and seizures. Seizure 19(10), 638–646 (2010)

    Article  Google Scholar 

  11. Keller, C.J., Honey, C.J., Entz, L., Bickel, S., Groppe, D.M., Toth, E., Ulbert, I., Lado, F.A., Mehta, A.D.: Corticocortical evoked potentials reveal projectors and integrators in human brain networks. J. Neurosci. 34(27), 9152–9163 (2014)

    Article  Google Scholar 

  12. Keller, C.J., Honey, C.J., Mégevand, P., Entz, L., Ulbert, I., Mehta, A.D.: Mapping human brain networks with cortico-cortical evoked potentials. Phil. Trans. R. Soc. B 369(1653), 20130528 (2014)

    Article  Google Scholar 

  13. Kim, D.W., Kim, H.K., Lee, S.K., Chu, K., Chung, C.K.: Extent of neocortical resection and surgical outcome of epilepsy: intracranial EEG analysis. Epilepsia 51(6), 1010–1017 (2010)

    Article  Google Scholar 

  14. Kreuz, T.: Measures of neuronal signal synchrony. Scholarpedia 6(12), 11922 (2011). (Revision 152249)

    Article  Google Scholar 

  15. Lega, B., Dionisio, S., Flanigan, P., Bingaman, W., Najm, I., Nair, D., Gonzalez-Martinez, J.: Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography. Epilepsy Res. 115, 17–29 (2015)

    Article  Google Scholar 

  16. Letzen, J.E., Craggs, J.G., Perlstein, W.M., Price, D.D., Robinson, M.E.: Functional connectivity of the default mode network and its association with pain networks in irritable bowel patients assessed via lidocaine treatment. J. Pain 14(10), 1077–1087 (2013)

    Article  Google Scholar 

  17. Liu, J., Ji, S., Ye, J., et al.: SLEP: sparse learning with efficient projections. Ariz. State Univ. 6, 491 (2009)

    Google Scholar 

  18. Nathan, S.S., Sinha, S.R., Gordon, B., Lesser, R.P., Thakor, N.V.: Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr. Clin. Neurophysiol. 86(3), 183–192 (1993)

    Article  Google Scholar 

  19. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Otti, A., Guendel, H., Henningsen, P., Zimmer, C., Noll-Hussong, M.: Functional network connectivity of pain-related resting state networks in somatoform pain disorder: an exploratory fMRI study. J. Psychiatry Neurosci.: JPN 38(1), 57 (2013)

    Article  Google Scholar 

  21. Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247–262 (2013)

    Google Scholar 

  22. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)

    Article  Google Scholar 

  23. Uddin, L.Q., Clare Kelly, A., Biswal, B.B., Xavier Castellanos, F., Milham, M.P.: Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 30(2), 625–637 (2009)

    Article  Google Scholar 

  24. Vecchio, F., Miraglia, F., Curcio, G., Della Marca, G., Vollono, C., Mazzucchi, E., Bramanti, P., Rossini, P.M.: Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: a study via graph theory. Clin. Neurophysiol. 126(6), 1108–1116 (2015)

    Article  Google Scholar 

  25. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM (2003)

    Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  27. Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  28. Yaffe, R.B., Borger, P., Megevand, P., Groppe, D.M., Kramer, M.A., Chu, C.J., Santaniello, S., Meisel, C., Mehta, A.D., Sarma, S.V.: Physiology of functional and effective networks in epilepsy. Clin. Neurophysiol. 126(2), 227–236 (2015)

    Article  Google Scholar 

  29. Ye, J., Liu, J.: Sparse methods for biomedical data. ACM SIGKDD Explor. Newsl. 14(1), 4–15 (2012)

    Article  Google Scholar 

  30. Zhou, J., Seeley, W.W.: Network dysfunction in Alzheimers disease and frontotemporal dementia: implications for psychiatry. Biol. Psychiatry 75(7), 565–573 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Liu, F., Xiang, W., Wang, S., Lega, B. (2016). Prediction of Seizure Spread Network via Sparse Representations of Overcomplete Dictionaries. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47103-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47102-0

  • Online ISBN: 978-3-319-47103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics