Skip to main content

Modelling Asymmetrical Facies Successions Using Pluri-Gaussian Simulations

  • Chapter
  • First Online:

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 19))

Abstract

An approach to model spatial asymmetrical relations between indicators is presented in a pluri-Gaussian framework. The underlying gaussian random functions are modelled using the linear model of co-regionalization, and a spatial shift is applied to them. Analytical relationships between the two underlying gaussian variograms and the indicator covariances are developed for a truncation rule with three facies and cut-off at 0. The application of this truncation rule demonstrates that the spatial shift on the underlying gaussian functions produces asymmetries in the modelled 1D facies sequences. For a general truncation rule, the indicator covariances can be computed numerically, and a sensitivity study shows that the spatial shift and the correlation coefficient between the gaussian functions provide flexibility to model the asymmetry between facies. Finally, a case study is presented of a Triassic vertical facies succession in the Latemar carbonate platform (Dolomites, Northern Italy) composed of shallowing-upward cycles. The model is flexible enough to capture the different transition probabilities between the environments of deposition and to generate realistic facies successions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Alabert F (1989) Non‐Gaussian data expansion in the earth sciences. Terra Nova 1(2):123–134

    Article  Google Scholar 

  • Allard D, D’Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable prediction. Eur J Soil Sci 62(3):381–393

    Article  Google Scholar 

  • Apanasovich TV, Genton MG (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97(1):15–30

    Article  Google Scholar 

  • Armstrong M, Galli A, Beucher H, Loc’h G, Renard D, Doligez B, … Geffroy F (2011) Plurigaussian simulations in geosciences. Springer Science & Business Media, New York

    Google Scholar 

  • Burgess P, Wright V, Emery D (2001) Numerical forward modelling of peritidal carbonate parasequence development: implications for outcrop interpretation. Basin Res 13(1):1–16

    Article  Google Scholar 

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476

    Article  Google Scholar 

  • Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newslett Stratigr 44(3):173–245

    Article  Google Scholar 

  • Chilès J-P, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, vol 713. Wiley, Hoboken

    Google Scholar 

  • D’Or D, Allard D, Biver P, Froidevaux R, Walgenwitz A (2008) Simulating categorical random fields using the multinomial regression approach. Paper presented at the Geostats 2008—proceedings of the eighth international geostatistics congress

    Google Scholar 

  • Dubrule O (2016) Indicator variogram models – do we have much choice?. Manuscript submitted for publication

    Google Scholar 

  • Egenhoff SO, Peterhänsel A, Bechstädt T, Zühlke R, Grötsch J (1999) Facies architecture of an isolated carbonate platform: tracing the cycles of the Latemar (Middle Triassic, northern Italy). Sedimentology 46(5):893–912

    Article  Google Scholar 

  • Fischer AG (1964) The Lofer cyclothems of the alpine Triassic. Princeton University, Princeton

    Google Scholar 

  • Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1(2):141–149

    Google Scholar 

  • Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2009) mvtnorm: multivariate normal and t distributions. R package version 0.9-8. URL http://CRAN.R-project.org/package=mvtnorm

  • Gneiting T, Kleiber W, Schlather M (2012) Matérn cross-covariance functions for multivariate random fields. J Am Stat Assoc 105(491):1167–1177

    Google Scholar 

  • Goldhammer R, Dunn P, Hardie L (1990) Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. Geol Soc Am Bull 102(5):535–562

    Article  Google Scholar 

  • Grotzinger JP (1986) Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada. Geol Soc Am Bull 97(10):1208–1231

    Article  Google Scholar 

  • Kendall M, Stuart A, Ord J (1994) Vol. 1: Distribution theory. Arnold, London

    Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer Science & Business Media, Berlin

    Google Scholar 

  • Li B, Zhang H (2011) An approach to modeling asymmetric multivariate spatial covariance structures. J Multivar Anal 102(10):1445–1453

    Article  Google Scholar 

  • Masetti D, Neri C, Bosellini A (1991) Deep-water asymmetric cycles and progradation of carbonate platforms governed by high-frequency eustatic oscillations (Triassic of the Dolomites, Italy). Geology 19(4):336–339

    Article  Google Scholar 

  • Oliver DS (2003) Gaussian cosimulation: modelling of the cross-covariance. Math Geol 35(6):681–698

    Article  Google Scholar 

  • Renard D, Bez N, Desassis N, Beucher H, Ors F, Laporte F (2015) RGeostats: the geostatistical package (Version 11.0.1). Retrieved from http://cg.ensmp.fr/rgeostats

  • Sena CM, John CM (2013) Impact of dynamic sedimentation on facies heterogeneities in Lower Cretaceous peritidal deposits of central east Oman. Sedimentology 60(5):1156–1183

    Article  Google Scholar 

  • Sheppard W (1899) On the application of the theory of error to cases of normal distribution and normal correlation. Philos Trans R Soc London Ser A Containing Pap Math Phys Charact 192:101–531

    Article  Google Scholar 

  • Strasser A (1988) Shallowing‐upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains). Sedimentology 35(3):369–383

    Article  Google Scholar 

  • Tucker M (1985) Shallow-marine carbonate facies and facies models. Geol Soc London Spec Publ 18(1):147–169

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Wackernagel H (2013) Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Earth Science and Engineering Department of Imperial College for a PhD studentship grant for T. Le Blévec and Total for funding O. Dubrule professorship at Imperial College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Le Blévec .

Editor information

Editors and Affiliations

Appendix: Analytical Expression of the Triple Gaussian Integral

Appendix: Analytical Expression of the Triple Gaussian Integral

In a similar fashion as Kendall et al. (1994), we consider three correlated gaussian variates being in their respective intervals as a set of three dependent events. With the truncation rule displayed in Fig. 1 and thresholds that equal 0, facies 1 at location x and facies 2 at location x+h correspond to one variate being negative and two positive. The indicator covariance C 12 (h) quantifies the probability of the intersection of these three events. The correlation matrix between the three gaussian variates is the following:

$$ {\displaystyle \sum }(h)=\left(\begin{array}{ccc}\hfill 1\hfill & \hfill {\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\boldsymbol{h}\right)\hfill & \hfill \frac{\boldsymbol{\rho} {\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\left|\boldsymbol{h}+\boldsymbol{a}\right|\right)}{{\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\boldsymbol{a}\right)}\hfill \\ {}\hfill {\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\boldsymbol{h}\right)\hfill & \hfill 1\hfill & \hfill \boldsymbol{\rho} \hfill \\ {}\hfill \frac{\boldsymbol{\rho} {\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\left|\boldsymbol{h}+\boldsymbol{a}\right|\right)}{{\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\boldsymbol{a}\right)}\hfill & \hfill \boldsymbol{\rho} \hfill & \hfill 1\hfill \end{array}\right) $$
(23)

The probability can be written as a triple integral of the corresponding gaussian density g Σ(h)(u,v,w):

$$ {C}_{12}(h)={\displaystyle {\int}_{-\infty}^0{\displaystyle {\int}_0^{+\infty }{\displaystyle {\int}_0^{+\infty }{g}_{\varSigma (h)}\left( u, v, w\right) dudvdw}}} $$
(24)

Thanks to the gaussian integral symmetry property, the probability of intersection of the events is the complementary of the probability of their union (Kendall et al. 1994). Therefore, by definition of the union, the intersection of the three events can be expressed as a sum of the corresponding single and pair events and so the triple integral as a sum of the single integrals that equal to 0.5 and double integrals with their respective correlation coefficient:

$$ \begin{array}{l}{C}_{12}(h)\\ {}\kern1em =\frac{1}{2}(1-3*0.5+{\displaystyle {\int}_{-\infty}^0{\displaystyle {\int}_0^{+\infty }{g}_{{\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\boldsymbol{h}\right)}\left(u,v\right) dudv}}+{\displaystyle {\int}_{-\infty}^0{\displaystyle {\int}_0^{+\infty }{g}_{\frac{\boldsymbol{\rho} {\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\left|\boldsymbol{h}+\boldsymbol{a}\right|\right)}{{\boldsymbol{\rho}}_{{\boldsymbol{Z}}_1}\left(\boldsymbol{a}\right)}}\left(u,v\right) dudv}}\kern2.3em +{\displaystyle {\int}_0^{+\infty }{\displaystyle {\int}_0^{+\infty }{g}_{\boldsymbol{\rho}}\left(u,v\right) dudv}})\end{array} $$
(25)

Sheppard (1899) gives then the solution of the double integral that allows to obtain the final expression of the transition probability between facies 1 and 2 (Eq. 15):

$$ {\displaystyle {\int}_0^{+\infty }{\int}_0^{+\infty }}{g}_{\rho}\left( u, v\right) dudv=\frac{1}{2}-{\displaystyle {\int}_0^{+\infty }{\int}_0^{+\infty }}{g}_{\rho}\left( u, v\right) dudv=\frac{1}{4}+\frac{1}{2\pi} \arcsin \left(\rho \right) $$
(26)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Le Blévec, T., Dubrule, O., John, C.M., Hampson, G.J. (2017). Modelling Asymmetrical Facies Successions Using Pluri-Gaussian Simulations. In: Gómez-Hernández, J., Rodrigo-Ilarri, J., Rodrigo-Clavero, M., Cassiraga, E., Vargas-Guzmán, J. (eds) Geostatistics Valencia 2016. Quantitative Geology and Geostatistics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-46819-8_4

Download citation

Publish with us

Policies and ethics