Skip to main content

Deriving Inverse Operators for Modal Logic

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2016 (ICTAC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9965))

Included in the following conference series:

Abstract

Spatial constraint systems are algebraic structures from concurrent constraint programming to specify spatial and epistemic behavior in multi-agent systems. We shall use spatial constraint systems to give an abstract characterization of the notion of normality in modal logic and to derive right inverse/reverse operators for modal languages. In particular, we shall identify the weakest condition for the existence of right inverses and show that the abstract notion of normality corresponds to the preservation of finite suprema. We shall apply our results to existing modal languages such as the weakest normal modal logic, Hennessy-Milner logic, and linear-time temporal logic. We shall discuss our results in the context of modal concepts such as bisimilarity and inconsistency invariance.

This work has been partially supported by the ANR project 12IS02001 PACE, the Colciencias project 125171250031 CLASSIC, and Labex DigiCosme (project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the program “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative syntactic characterization of cs, akin to Scott information systems, is given in [25].

References

  1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., et al. (ed.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford University Press, Oxford (1994)

    Google Scholar 

  2. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, 1st edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  3. Boer, F.S., Di Pierro, A., Palamidessi, C.: Nondeterminism and infinite computations in constraint programming. Theor. Comput. Sci. 151, 37–78 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35 (1997)

    Google Scholar 

  5. De Nicola, R., Ferrari, G.L.: Observational logics and concurrency models. In: Nori, K.V., Veni Madhavan, C.E. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 301–315. Springer, Heidelberg (1990). doi:10.1007/3-540-53487-3_53

    Chapter  Google Scholar 

  6. De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165. Springer, Heidelberg (1990). doi:10.1007/BFb0039058

    Google Scholar 

  7. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM (JACM) 42(2), 458–487 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Díaz, J.F., Rueda, C., Valencia, F.D.: Pi+- calculus: a calculus for concurrent processes with constraints. CLEI Electron. J. 1(2), 2 (1998)

    Google Scholar 

  9. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: operational and phase semantics. Inf. Comput. 165, 14–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge, 4th edn. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  11. Falaschi, M., Olarte, C., Palamidessi, C., Valencia, F.: Declarative diagnosis of temporal concurrent constraint programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 271–285. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74610-2_19

    Chapter  Google Scholar 

  12. Goltz, U., Kuiper, R., Penczek, W.: Propositional temporal logics and equivalences. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 222–236. Springer, Heidelberg (1992). doi:10.1007/BFb0084794

    Chapter  Google Scholar 

  13. Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: An algebraic view of space/belief and extrusion/utterance for concurrency/epistemic logic. In: PPDP 2015, pp. 161–172. ACM (2015)

    Google Scholar 

  14. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM (JACM) 32(1), 137–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32940-1_23

    Chapter  Google Scholar 

  16. Kripke, S.A.: Semantical considerations on modal logic. Acta Philos. Fennica 16, 83–94 (1963)

    MathSciNet  MATH  Google Scholar 

  17. Macnab, D.: Modal operators on heyting algebras. Algebra Univers. 12(1), 5–29 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Phillips, I., Ulidowski, I.: A logic with reverse modalities for history-preserving bisimulations. In: EXPRESS 2011. EPTCS, vol. 64, pp. 104–118 (2011)

    Google Scholar 

  20. Pnueli, A., Manna, Z.: The Temporal Logic of Reactive and Concurrent Systems. Springer, New York (1992)

    MATH  Google Scholar 

  21. Popkorn, S.: First Steps in Modal Logic, 1st edn. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  22. Prior, A.N.: Past, Present and Future, vol. 154. Oxford University Press, Oxford (1967)

    Book  MATH  Google Scholar 

  23. Réty, J.: Distributed concurrent constraint programming. Fundam. Inf. 34, 323–346 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Ryan, M., Schobbens, P.-Y.: Counterfactuals and updates as inverse modalities. J. Logic Lang. Inf. 6, 123–146 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: POPL 1991, pp. 333–352. ACM (1991)

    Google Scholar 

  26. Vickers, S.: Topology via Logic, 1st edn. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michell Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Guzmán, M., Perchy, S., Rueda, C., Valencia, F.D. (2016). Deriving Inverse Operators for Modal Logic. In: Sampaio, A., Wang, F. (eds) Theoretical Aspects of Computing – ICTAC 2016. ICTAC 2016. Lecture Notes in Computer Science(), vol 9965. Springer, Cham. https://doi.org/10.1007/978-3-319-46750-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46750-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46749-8

  • Online ISBN: 978-3-319-46750-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics