Skip to main content

How Hard is It to Verify Flat Affine Counter Systems with the Finite Monoid Property?

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9938))

Abstract

We study several decision problems for counter systems with guards defined by convex polyhedra and updates defined by affine transformations. In general, the reachability problem is undecidable for such systems. Decidability can be achieved by imposing two restrictions: (1) the control structure of the counter system is flat, meaning that nested loops are forbidden, and (2) the multiplicative monoid generated by the affine update matrices present in the system is finite. We provide complexity bounds for several decision problems of such systems, by proving that reachability and model checking for Past Linear Temporal Logic stands in the second level of the polynomial hierarchy \(\varSigma ^P_2\), while model checking for First Order Logic is PSPACE-complete.

R. Iosif—Supported by the French ANR project VECOLIB (ANR-14-CE28-0018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We ensure deadlock-freedom by adding a sink state \(\sigma \) to S, with a self-loop \(\sigma \xrightarrow [\scriptscriptstyle ]{\scriptscriptstyle \top } \sigma \), and a transition \(q\xrightarrow [\scriptscriptstyle ]{\scriptscriptstyle \top } \sigma \) from each state \(q\in Q\).

  2. 2.

    They are defined in the proof of Lemma 3.

  3. 3.

    We take here the classical semantics of \(\mathsf{PLTL}\) over infinite words.

References

  1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Bardin, S., Finkel, A., Petrucci, J.L.L.: FAST: fast acceleration of symbolic transition systems. http://tapas.labri.fr/trac/wiki/FASTer

  3. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-dimensional vector addition systems with states is PSPACE-complete. CoRR abs/1412.4259 (2014). http://arxiv.org/abs/1412.4259

  4. Boigelot, B.: Symbolic methods for exploring infinite state spaces. Ph.D., Univ. de Liège (1999)

    Google Scholar 

  5. Bozga, M., Iosif, R., Konecný, F.: Deciding conditional termination. Log. Methods Comput. Sci. 10(3), 1–61 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular properties on flat counter systems. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 162–173. Springer, Heidelberg (2013)

    Google Scholar 

  9. Demri, S., Dhar, A.K., Sangnier, A.: Equivalence between model-checking flat counter systems and Presburger arithmetic. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 85–97. Springer, Heidelberg (2014)

    Google Scholar 

  10. Demri, S., Dhar, A.K., Sangnier, A.: Taming past LTL and flat counter systems. Inf. Comput. 242, 306–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL* over flat Presburger counter systems. J. Appl. Non-Class. Log. 20(4), 313–344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in succinctly represented control flow graphs. Logical Methods Comput. Sci. 8(3) (2012)

    Google Scholar 

  14. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Model checking succinct and parametric one-counter automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 575–586. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn multicounter machines. J. Comput. Syst. Sci. 22, 220–229 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In: CSL-LICS 2014, pp. 47:1–47:10. ACM (2014)

    Google Scholar 

  17. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating interpolants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 187–202. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Iosif, R., Sangnier, A.: How hard is it to verify flat affine counter systems with the finite monoid property? CoRR abs/1605.05836 (2016). http://arxiv.org/abs/1605.05836

  19. Konecny, F., Iosif, R., Bozga, M.: FLATA: a verification toolset for counter machines (2009). http://nts.imag.fr/index.php/Flata

  20. Kuhtz, L., Finkbeiner, B.: Weak Kripke structures and LTL. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 419–433. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Leroux, J., Sutre, G.: On flatness for 2-Dimensional vector addition systems with states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 402–416. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Lipton, R.J.: The reachability problem is exponential-space-hard. Technical report 62, Department of Computer Science, Yale University (1976)

    Google Scholar 

  23. Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Upper Saddle River (1967)

    MATH  Google Scholar 

  25. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic. J. ACM 32(3), 733–749 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stockmeyer, L.J.: The complexity of decision problems in automata and logic. Ph.D. thesis, MIT (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Sangnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Iosif, R., Sangnier, A. (2016). How Hard is It to Verify Flat Affine Counter Systems with the Finite Monoid Property?. In: Artho, C., Legay, A., Peled, D. (eds) Automated Technology for Verification and Analysis. ATVA 2016. Lecture Notes in Computer Science(), vol 9938. Springer, Cham. https://doi.org/10.1007/978-3-319-46520-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46520-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46519-7

  • Online ISBN: 978-3-319-46520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics