Skip to main content

Input-Output Formalism for Few-Photon Transport

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 185))

Abstract

We extend the input-output formalism of quantum optics to analyze few-photon transport in waveguide quantum electrodynamics (QED) systems. We provide explicit analytical derivations for one- and two-photon scattering matrix elements based on the quantum causality relation. The computation scheme can be generalized to N-photon scattering systematically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, T.J. Kippenberg, K.J. Vahala, H.J. Kimble, Nature 443, 671–674 (2006)

    Google Scholar 

  2. A.V. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park, M.D. Lukin, Nature 450, 402–406 (2007)

    Article  ADS  Google Scholar 

  3. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, P. Lodahl, Phys. Rev. Lett. 101, 113903 (2008)

    Article  ADS  Google Scholar 

  4. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162–167 (2004)

    Google Scholar 

  5. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87–90 (2005)

    Article  ADS  Google Scholar 

  6. B. Dayan, A.S. Parkins, T. Aoki, E.P. Ostby, K.J. Vahala, H.J. Kimble, Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  7. K. Srinivasan, O. Painter, Nature 450, 862–865 (2007)

    Article  ADS  Google Scholar 

  8. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, J. Vuc̆ković, Phys. Rev. Lett. 104, 073904 (2010)

    Google Scholar 

  9. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoǧlu, Nature 445, 896–899 (2007)

    Article  ADS  Google Scholar 

  10. C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J.M. Fink, A.A. Abdumalikov Jr., M. Baur, S. Filipp, M.P. da Silva, A. Blais, A. Wallraff, Phys. Rev. Lett. 106, 243601 (2011)

    Article  ADS  Google Scholar 

  11. D.E. Chang, A.S. Sørensen, E.A. Demler, M.D. Lukin, Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  12. J.T. Shen, S. Fan, Phys. Rev. Lett. 98, 153003 (2007)

    Article  ADS  Google Scholar 

  13. J.T. Shen, S. Fan, Phys. Rev. A 76, 062709 (2007)

    Article  ADS  Google Scholar 

  14. T. Shi, C.P. Sun, Phys. Rev. B 79, 205111 (2009)

    Article  ADS  Google Scholar 

  15. J.Q. Liao, C.K. Law, Phys. Rev. A 82, 053836 (2010)

    Article  ADS  Google Scholar 

  16. H. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. A 82, 063816 (2010)

    Article  ADS  Google Scholar 

  17. S. Fan, S.E. Kocabas, J.T. Shen, Phys. Rev. A 82, 063821 (2010)

    Article  ADS  Google Scholar 

  18. T. Shi, S. Fan, C.P. Sun, Phys. Rev. A 84, 063803 (2011)

    Article  ADS  Google Scholar 

  19. P. Longo, P. Schmitteckert, K. Busch, Phys. Rev. A 83, 063828 (2011)

    Article  ADS  Google Scholar 

  20. E. Rephaeli, S.E. Kocabas, S. Fan, Phys. Rev. A 84, 063832 (2011)

    Article  ADS  Google Scholar 

  21. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, F.J. Garcia-Vidal, Phys. Rev. Lett. 106, 020501 (2011)

    Article  ADS  Google Scholar 

  22. D. Roy, Phys. Rev. Lett. 106, 053601 (2011)

    Article  ADS  Google Scholar 

  23. P. Kolchin, R.F. Oulton, X. Zhang, Phys. Rev. Lett. 106, 113601 (2011)

    Article  ADS  Google Scholar 

  24. H. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. A 85, 043832 (2012)

    Article  ADS  Google Scholar 

  25. E. Rephaeli, S. Fan, IEEE J. Sel. Top. Quantum Electron. 18 (2012)

    Google Scholar 

  26. Z. Ji, S. Gao, Opt. Commun. 285, 1302 (2012)

    Article  ADS  Google Scholar 

  27. H. Zheng, H.U. Baranger, Phys. Rev. Lett. 110, 113601 (2013)

    Article  ADS  Google Scholar 

  28. S. Xu, E. Rephaeli, S. Fan, Phys. Rev. Lett. 111, 223602 (2013)

    Article  ADS  Google Scholar 

  29. J.Q. Liao, C.K. Law, Phys. Rev. A 87, 043809 (2013)

    Article  ADS  Google Scholar 

  30. T. Shi, S. Fan, Phys. Rev. A 87, 063818 (2013)

    Article  ADS  Google Scholar 

  31. D. Roy, Phys. Rev. A 87, 063819 (2013)

    Article  ADS  Google Scholar 

  32. E. Rephaeli, S. Fan, Photonics Res. 1, 110 (2013)

    Article  Google Scholar 

  33. E. Snchez-Burillo, D. Zueco, J. Garca-Ripoll, L. Martn-Moreno. arXiv:1406.5779. [quant-ph]

  34. T.Y. Li, J.F. Huang, C.K. Law, Phys. Rev. A 91, 043834 (2015)

    Article  ADS  Google Scholar 

  35. S. Xu, S. Fan, Phys. Rev. A 91, 043845 (2015)

    Article  ADS  Google Scholar 

  36. T. Caneva, M.T. Manzoni, T. Shi, J.S. Douglas, J.I. Cirac, D.E. Chang, New J. Phys. 17(11), 113001 (2015)

    Article  ADS  Google Scholar 

  37. T. Shi, D.E. Chang, J.I. Cirac, Phys. Rev. A 92, 053834 (2015)

    Article  ADS  Google Scholar 

  38. C.W. Gardiner, M.J. Collett, Phys. Rev. A 31, 3761 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  39. D.F. Walls, G.J. Milburn, Quantum Optics, 2nd edn. (Springer, New York, 2008), See Chap. 7 for the input-output formalism in cavities, and Sec. 10.5 for resonance fluorescence

    Google Scholar 

  40. J.T. Shen, S. Fan, Opt. Lett. 30, 2001 (2005)

    Article  ADS  Google Scholar 

  41. V.P. Nair, Quantum Field Theory: A Modern Perspective (Springer, 2005), Chapter 8.7

    Google Scholar 

  42. E. Wichmann, J. Crichton, Phys. Rev. 132, 2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Weinberg, The Quantum Field of Fields, Volume I Foundations (Cambridge University Press, 2005), Chapter 4.3

    Google Scholar 

Download references

Acknowledgements

This work is supported by the AFOSR-MURI program, Grant No. FA9550-12-1-0488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Xu .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1.1 Derivation of Input-Output Formalism

The Heisenberg equations associated with the Hamiltonian (1.2)–(1.4) are

$$\begin{aligned} \frac{d}{dt}c_{k}= & {} -i\,k\,c_{k}-i\,\frac{V}{\sqrt{v_g}}\,a,\end{aligned}$$
(1.49)
$$\begin{aligned} \frac{d}{dt}a= & {} -i\,\left[ a,\,H_{\text {c}}\right] -i\,\frac{V}{\sqrt{v_g}}\int dk\,c_k\,. \end{aligned}$$
(1.50)

We let

$$\begin{aligned} \varPhi (t)\equiv \int \,\frac{dk}{\sqrt{2\pi }}\, c_{k}(t),\nonumber \end{aligned}$$

and define the input and output operators

$$\begin{aligned} c_{\text {in}}(t)= & {} \int \,\frac{dk}{\sqrt{2\pi }}\, c_{k}(t_0)\,e^{-ik(t-t_0)},\nonumber \\ c_{\text {out}}(t)= & {} \int \,\frac{dk}{\sqrt{2\pi }}\, c_{k}(t_1)\,e^{-ik(t-t_1)},\nonumber \end{aligned}$$

with \(t_0\rightarrow -\infty ,t_1\rightarrow +\infty \).

After multiplying (1.49) by the factor \(\exp (ikt)\), we integrate it from an initial time \(t_0\) to get

$$\begin{aligned} c_{k}(t)=c_{k}(t_0)e^{-ik(t-t_0)}-i\,\frac{V}{\sqrt{v_g}}\int _{t_0}^td\tau \, a(\tau )e^{-ik(t-\tau )},\nonumber \end{aligned}$$

and then integrate it with respect to k to get

$$\begin{aligned} \varPhi (t)=c_{\text {in}}(t)-i\frac{V}{\sqrt{v_g}}\frac{1}{2}\sqrt{2\pi }\,a(t)=c_{\text {in}}(t)-i\frac{\sqrt{\gamma }}{2}\,a(t). \end{aligned}$$
(1.51)

Here, notice that we integrate over half the delta function, which results in a factor of 1 / 2 and \(\gamma \) is defined as \(\gamma \equiv 2\pi V^2/v_g\).

Furthermore, plugging (1.51) into (1.50) results in

$$\begin{aligned} \frac{d}{dt}a =-i\,\left[ a,\,H_{\text {c}}\right] -\frac{\gamma }{2}a-i\,\sqrt{\gamma }\,c_{\text {in}}(t).\nonumber \end{aligned}$$

Similarly, we integrate (1.49) up to a final time \(t_1>t\) and obtain

$$\begin{aligned} \varPhi (t)=c_{\text {out}}(t)+i\frac{\sqrt{\gamma }}{2}\,a(t). \end{aligned}$$
(1.52)

Combining (1.51) and (1.52), we finally obtain

$$\begin{aligned} c_{\text {out}}(t)=c_{\text {in}}(t)-i\sqrt{\gamma }\,a(t). \end{aligned}$$
(1.53)

1.1.2 Derivation of Effective Hamiltonian

We first prove that the propagator of the cavity can be computed using the effective Hamiltonian (1.32). That is, when \(H_{\text {c}}=H_{\text {c}}^{(0)}\equiv \omega _c\, a^{\dag }a\),

$$\begin{aligned} G^{(0)}({t', t})=\widetilde{G}^{(0)}({t', t}),\nonumber \end{aligned}$$

where

$$\begin{aligned} G^{(0)}({t', t})\equiv & {} \langle 0| {\mathscr {T}}\,{a}(t') {a^{\dag }}(t) |0\rangle ,\nonumber \\ \widetilde{G}^{(0)}({t', t})\equiv & {} \langle 0| {\mathscr {T}}\,\widetilde{a}(t') \widetilde{a^{\dag }}(t) |0\rangle . \nonumber \end{aligned}$$

a(t) and \(a^{\dag }(t)\) are Heisenberg operators in the input-output formalism (1.8)–(1.10). \(\widetilde{a}(t)\) and \(\widetilde{a^{\dag }}(t)\) are defined as

$$\begin{aligned} \widetilde{a}(t)=e^{i H_{\text {eff}} t}\, a\, e^{-i H_{\text {eff}} t},\,\,\,\,\,\,\,\,\widetilde{a^{\dag }}(t)=e^{i H_{\text {eff}} t} \,a^{\dag }\, e^{-i H_{\text {eff}} t}, \end{aligned}$$
(1.54)

whose evolution is controlled by the effective Hamiltonian (1.32 ) .

The proof is as follows. When \(t'>t\),

$$\begin{aligned} \frac{\partial }{\partial t'} G^{(0)}({t', t})= & {} \langle 0|\,\frac{d{a}(t')}{dt'}\, {a^{\dag }}(t)\, |0\rangle \nonumber \\= & {} -i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, \langle 0|{a}(t')\, {a^{\dag }}(t)|0\rangle -i\sqrt{\gamma }\,\langle 0|{ c}_{\text {in}}(t')a^{\dag }(t)|0\rangle \nonumber \\= & {} -i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, G^{(0)}({t', t})\,,\nonumber \\ \frac{\partial }{\partial t} G^{(0)}({t', t})= & {} \langle 0|\,{a}(t')\frac{d{a}^{\dag }(t)}{dt} \,|0\rangle \nonumber \\= & {} i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, \langle 0|{a}(t')\, {a^{\dag }}(t)|0\rangle +i\sqrt{\gamma }\,\langle 0|a(t')\,{c}^{\dag }_{\text {out}}(t)|0\rangle \nonumber \\= & {} i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, G^{(0)}({t', t}),\nonumber \end{aligned}$$

where we plug in the input-output formalism (1.9) and (1.10) and use the respective quantum casuality (1.15) and (1.16) so that \(\langle 0|{ c}_{\text {in}}(t')a^{\dag }(t)|0\rangle =\langle 0|a^{\dag }(t)\,{ c}_{\text {in}}(t')|0\rangle =0\) and \(\langle 0|a(t')\,{c}^{\dag }_{\text {out}}(t)|0\rangle =\langle 0|{c}^{\dag }_{\text {out}}(t)\,a(t')|0\rangle =0\) when \(t'>t\). On the other hand, by (1.54), one can compute

$$\begin{aligned} \frac{\partial }{\partial t'} \widetilde{G}^{(0)}({t', t})= & {} \langle 0|\,\frac{d\widetilde{a}(t')}{dt'}\, \widetilde{a^{\dag }}(t)\, |0\rangle =-i\,\langle 0|\,[\widetilde{a}, H_{\text {eff}}](t')\, \widetilde{a^{\dag }}(t)\, |0\rangle \nonumber \\= & {} -i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, \langle 0|\widetilde{a}(t')\, \widetilde{a^{\dag }}(t)|0\rangle =-i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, \widetilde{G}^{(0)}({t', t}),\nonumber \\ \frac{\partial }{\partial t} \widetilde{G}^{(0)}({t', t})= & {} \langle 0|\widetilde{a}(t')\frac{d\widetilde{a}^{\dag }(t)}{dt} \,|0\rangle =-i\,\langle 0|\,\widetilde{a}(t')\,[\widetilde{a^{\dag }}, H_{\text {eff}}](t)\, |0\rangle \nonumber \\= & {} i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, \langle 0|\widetilde{a}(t')\, \widetilde{a^{\dag }}(t)|0\rangle =i\,\left( \omega _c-i\,\frac{\gamma }{2}\right) \, \widetilde{G}^{(0)}({t', t}).\nonumber \end{aligned}$$

So \(G^{(0)}({t', t})\) and \(\widetilde{G}^{(0)}({t', t})\) satisfy exactly the same differential equations when \(t'>t\). They also have the same initial values at \(t'= t\). Therefore, by the uniqueness theorem for differential equations, we can conclude that \(G^{(0)}({t', t})=\widetilde{G}^{(0)}({t', t})\).

Now for a general Hamiltonian \(H_{\text {c}}=H_{\text {c}}^{(0)}+V\), according to the perturbation theory in quantum field theory, all Green functions in principle are completely determined by the propagator \(G^{(0)}\)and the interaction vertices. The vertices only rely on the form of the interaction term V and is independent of the waveguide photons. As a result, all Green functions, including higher-order ones, can be computed by the effective Hamiltonian (1.32).

In [18, 35], the effective Hamiltonian is obtained in the path integral formalism by integrating out the waveguide degrees of freedom in the full Hamiltonian. The derivation here only relies on the input-output formalism (1.8)–(1.10) and the resulting quantum causality (1.15) and (1.16).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, S., Fan, S. (2017). Input-Output Formalism for Few-Photon Transport. In: Bozhevolnyi, S., Martin-Moreno, L., Garcia-Vidal, F. (eds) Quantum Plasmonics. Springer Series in Solid-State Sciences, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-45820-5_1

Download citation

Publish with us

Policies and ethics