Skip to main content

The Capacitated Vehicle Routing Problem with Evidential Demands: A Belief-Constrained Programming Approach

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9861))

Included in the following conference series:

Abstract

This paper studies a vehicle routing problem, where vehicles have a limited capacity and customer demands are uncertain and represented by belief functions. More specifically, this problem is formalized using a belief function based extension of the chance-constrained programming approach, which is a classical modeling of stochastic mathematical programs. In addition, it is shown how the optimal solution cost is influenced by some important parameters involved in the model. Finally, some instances of this difficult problem are solved using a simulated annealing metaheuristic, demonstrating the feasibility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodin, L.D., Golden, B.L., Assad, A.A., Ball, M.O.: Routing and scheduling of vehicles and crews: the state of the art. Comput. Oper. Res. 10(2), 63–212 (1983)

    Article  MathSciNet  Google Scholar 

  2. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cordeau, J.-F., Laporte, G., Savelsbergh, M.W.P., Vigo, D.: Vehicle routing (Chap. 6). In: Barnhart, C., Laporte, G. (eds.) Transportation, Handbooks in Operations Research and Management Science, vol. 14, pp. 367–428. Elsevier, Amsterdam (2007)

    Google Scholar 

  4. Ferson, S., Tucker, W.T.: Sensitivity in risk analyses with uncertain numbers. Technical report, Sandia National Laboratories (2006)

    Google Scholar 

  5. Harmanani, H., Azar, D., Helal, N., Keirouz, W.: A simulated annealing algorithm for the capacitated vehicle routing problem. In: 26th International Conference on Computers and their Applications, New Orleans, USA (2011)

    Google Scholar 

  6. Kirby, M.J.L.: The current state of chance-constrained programming. In: Kuhn, H.W. (ed.) Proceedings of the Princeton Symposium on Mathematical Programming, pp. 93–111. Princeton University Press (1970)

    Google Scholar 

  7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Laporte, G., Louveaux, F.V., van Hamme, L.: An integer l-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Oper. Res. 50, 415–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Masri, H., Abdelaziz, F.B.: Belief linear programming. Int. J. Approx. Reason. 51, 973–983 (2010)

    Article  MATH  Google Scholar 

  10. Mourelatos, Z.P., Zhou, J.: A design optimization method using evidence theory. J. Mech. Design 128, 901–908 (2006)

    Article  Google Scholar 

  11. Nassreddine, G., Abdallah, F., Denoeux, T.: State estimation using interval analysis and belief function theory: application to dynamic vehicle localization. IEEE Trans. Syst. Man Cybern. B 40(5), 1205–1218 (2010)

    Article  Google Scholar 

  12. Pichon, F., Dubois, D., Denoeux, T.: Relevance and truthfulness in information correction and fusion. Int. J. Approx. Reason. 53(2), 159–175 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vehicle Routing Data Sets. http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm. Accessed 20 Mar 2016

  14. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  15. Srivastava, R.K., Deb, K., Tulshyan, R.: An evolutionary algorithm based approach to design optimization using evidence theory. J. Mech. Design 135(8), 081003-1–081003-12 (2013)

    Article  Google Scholar 

  16. Sungur, I., Ordónez, F., Dessouky, M.: A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty. IIE Trans. 40, 509–523 (2008)

    Article  Google Scholar 

  17. Yager, R.R.: Arithmetic and other operations on Dempster-Shafer structures. Int. J. Man Mach. Stud. 25(4), 357–366 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Helal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Helal, N., Pichon, F., Porumbel, D., Mercier, D., Lefèvre, É. (2016). The Capacitated Vehicle Routing Problem with Evidential Demands: A Belief-Constrained Programming Approach. In: Vejnarová, J., Kratochvíl, V. (eds) Belief Functions: Theory and Applications. BELIEF 2016. Lecture Notes in Computer Science(), vol 9861. Springer, Cham. https://doi.org/10.1007/978-3-319-45559-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45559-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45558-7

  • Online ISBN: 978-3-319-45559-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics