Skip to main content

Application of Supply Function Equilibrium Model to Describe the Interaction of Generation Companies in the Electricity Market

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9869))

Abstract

The paper studies the trade in the spot electricity market based on submitting bids of energy consumers and producers to the market operator. We investigate supply function equilibrium (SFE) model, in which generation capacities are integrated into large generation companies that have a common purpose of maximizing their profits. For this case we prove the existence and uniqueness of equilibrium for a linear function of aggregate demand and quadratic costs. The mechanism is tested on the basis of the Siberian electric power system, Russia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aizenberg, N.I.: Analysis of the mechanisms of functioning of wholesale electricity markets. ECO 6, 97–112 (2014). (in Russian)

    Google Scholar 

  2. Joskow, P.L.: Lessons learned from electricity market liberalization. Energy J. 29(2), 9–42 (2008). The Future of Electricity: Papers in Honor of David Newbery

    Google Scholar 

  3. Kalashnikov, V.V., Bulavsky, V.A., Kalashnykova, N.I., Castillo, F.J.: Mixed oligopoly with consistent conjectures. Eur. J. Oper. Res. 210, 729–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kalashnikov, V.V., Bulavsky, V.A., Kalashnykova, N.I.: Structure of demand and consistent conjectural variations equilibrium (CCVE) in a mixed oligopoly model. Ann. Oper. Res. 217, 281–297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Klemperer, P., Meyer, M.: Supply function equilibria in oligopoly under uncertainty. Econometrica 57, 1243–1277 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baldick, R., Grant, R., Kahn, E.: Theory and application of linear supply function equilibrium in electricity markets. J. Regul. Econ. 25, 143–167 (2004)

    Article  Google Scholar 

  7. Vasin, A., Dolmatova, M., Gao, H.: Supply function auction for linear asymmetric oligopoly: equilibrium and convergence. Procedia Comput. Sci. 55, 112–118 (2015)

    Article  Google Scholar 

  8. Ayzenberg, N., Kiseleva, M., Zorkaltsev, V.: Models of imperfect competition in analysis of siberian electricity market. J. New Econ. Assoc. 18(2), 62–88 (2013). (in Russian)

    Google Scholar 

  9. Anderson, E., Hu, X.: Finding supply function equilibria with asymmetric firms. Oper. Res. 56, 697–711 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Green, R.: Increasing competition in the British electricity spot market. J. Ind. Econ. 44(2), 205–216 (1996)

    Article  Google Scholar 

  11. Davidson M.R., Dogadushkina Yu.V., Kreines E.M., Novikova N.M., Udaltsov Yu.A., Shiryaeva L.V.: Mathematical model of competitive wholesale electricity market in Russia. In: Proceedings of the Russian Academy of Sciences. Theory and Systems of Control, vol. 3, pp. 72–83 (in Russian) (2004)

    Google Scholar 

  12. Rudkevich, A., Supply function equilibrium in power markets: learning all the way. TCA Technical paper, pp. 1299–1702 (1999)

    Google Scholar 

  13. Annual Report: The operator of power systems Siberia 2011. Kemerovo (2011)

    Google Scholar 

  14. Nahata, B., Izyumov, A., Busygin, V., Mishura, A.: Application of Ramsey model in transition economy: a Russian case study. Energy Econ. 29, 105–125 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research, grant 16-06-00071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Aizenberg .

Editor information

Editors and Affiliations

Appendix: Proof of the Proposition

Appendix: Proof of the Proposition

Let a generation company have two capacities; \(G=\left\{ l,\,\,\, k\right\} \). Then the profit function is:

$$ \pi _{l+k}\left( q_{k},\; q_{l,}\; q_{-(k+l)},\; p\right) =p\cdot q_{k}+p\cdot q_{l}-C_{k}\left( q_{k}\right) -C_{l}\left( q_{l}\right) . $$

Since the company redistributes the output (a residual demand) inside according to the condition of cost optimization it is necessary to equate the marginal revenue (which in this case is the same for any sold unit of commodity) to the marginal costs. For two capacities this is:

$$ \left\{ \begin{array}{c} \frac{\partial \pi _{k+l}}{\partial q_{k}}=\frac{\partial p}{\partial q_{k}}\left( q_{k}+q_{l}\right) -MC_{k}\left( q_{k}\right) =0,\\ \frac{\partial \pi _{k+l}}{\partial q_{l}}=\frac{\partial p}{\partial q_{l}}\left( q_{k}+q_{l}\right) -MC_{l}\left( q_{l}\right) =0. \end{array}\right. $$

Hence, the main condition is: \(MC_{k}\left( q_{k}\right) =MC_{l}\left( q_{l}\right) .\) The impact of each unit of output of companies on the market price is equivalent to \(\frac{\partial p}{\partial q_{l}}=\frac{\partial p}{\partial q_{k}}\). For the linear supply functions this condition is:

$$ a_{k}+c_{k}\beta _{k}\left( p-\alpha _{k}\right) =a_{l}+c_{l}\cdot \beta _{l}\left( p-\alpha _{l}\right) . $$

Then

$$\begin{aligned} \beta _{k}=\frac{\beta _{l}\cdot c_{l}}{c_{k}},\,\,\,\,\,\,\,\alpha _{k}=\alpha _{l}+\frac{a_{k}-a_{l}}{\beta _{l}\cdot c_{l}}. \end{aligned}$$
(12)

Using (12), the supply function can be written through the costs of the capacities

$$ q_{k}+q_{l}=\beta _{l}\left( 1+\frac{c_{l}}{c_{k}}\right) \cdot p-\beta _{l}\left( 1+\frac{c_{l}}{c_{k}}\right) \alpha _{l}-\frac{a_{k}-a_{l}}{c_{k}}. $$

Hence the linear supply function, submitted by the generation company to operator, is:

$$ q_{k+l}=\beta _{g}\left( p-\alpha _{g}\right) ,\,\,\, $$

where

$$ \alpha _{g}=\alpha _{l}+\frac{a_{k}-a_{l}}{\beta _{l}\cdot \left( c_{k}+c_{l}\right) },\,\,\,\,\,\beta _{g}=\beta _{l}\cdot \left( 1+\frac{c_{l}}{c_{k}}\right) . $$

The total costs of the generation company is the sum of costs of separate capacities:

$$ TC\left( q_{l}+q_{k}\right) =a_{k}q_{k}+0.5\cdot c_{k}q_{k}^{2}+a_{l}q_{l}+0.5\cdot c_{l}q_{l}^{2}. $$

Substitute \(q_{i}=\beta _{i}\left( p-\alpha _{i}\right) ,\, i\in \{l,k\}\), and (12):

$$ TC\left( q_{l}+q_{k}\right) = $$
$$ \left( 1+\frac{c_{l}}{c_{k}}\right) \cdot \beta _{l}\left( p-\alpha _{l}\right) -0.5\cdot c_{l}\left( 1+\frac{c_{l}}{c_{k}}\right) \left( \beta _{l}\left( p-\alpha _{l}\right) \right) ^{2}\alpha _{l}-\frac{\left( a_{k}-a_{l}\right) \left( a_{k}+a_{l}\right) }{2c_{k}}. $$

Using the general form of the cost function

$$ TC\left( q_{g}\right) =a_{g}\beta _{g}\left( p-\alpha _{g}\right) +0.5\cdot c_{g}\left( \beta _{g}\left( p-\alpha _{g}\right) \right) ^{2}, $$

we obtain a system of equations from which it is possible to determine the required parameters for the aggregate cost function of the generation company:

$$ \left\{ \begin{array}{l} a_{g}-c_{g}\frac{a_{k}-a_{l}}{c_{k}}=1,\\ c_{g}=\frac{c_{k}\cdot c_{l}}{c_{k}+c_{l}},\\ 2a_{g}-c_{g}\frac{a_{k}-a_{l}}{c_{k}-c_{l}}=a_{k}+a_{l}. \end{array}\right. $$

Thus, we can reduce our problem to the problem with separate capacities. In this case, the competitors consider generating company with the supply function of the form \(q_{k+l}=\beta _{g}\left( p-\alpha _{g}\right) \). The company problem is:

$$ \left\{ \begin{array}{l} \pi \left( q_{g},q_{-g},\; p\right) =p\cdot \beta _{g}\left( p-\alpha _{g}\right) -a_{g}\beta _{g}\left( p-\alpha _{G}\right) -0.5\cdot c_{g}\left( \beta _{g}\left( p-\alpha _{g}\right) \right) ^{2}\rightarrow \max \limits _{P};\\ a_{g}=a_{k}+a_{l}-1,\,\,\, c_{g}=\frac{c_{k}\cdot c_{l}}{c_{k}+c_{l}},\\ \alpha _{g}=\alpha _{l}+\frac{a_{k}-a_{l}}{\beta _{l}\cdot \left( c_{k}+c_{l}\right) }=\alpha _{k}+\frac{a_{l}-a_{k}}{\beta _{k}\cdot \left( c_{k}+c_{l}\right) },\\ \beta _{g}=\beta _{l}\cdot \left( 1+\frac{c_{l}}{c_{k}}\right) =\beta _{k}\cdot \left( 1+\frac{c_{k}}{c_{l}}\right) . \end{array}\right. $$

The profit function is concave, therefore the maximum is attained. As in [7], we prove the uniqueness of the positive solution for the coefficients \(\beta _{1}\mathrm{,...,}\beta _{\mathrm{g}},...,\beta _{n}\). From the uniqueness of the solution and (7) it follows the uniqueness of a solution for the case with generation companies. The coefficients of the supply function is:

\(q_{i}=\beta _{i}\left( P-\alpha _{i}\right) ,\,\,\,\) \(\alpha _{i}=a_{i},\,\,\,\beta _{i}=\frac{1}{1+c_{i}\left( \gamma +\sum \limits _{j\ne i}\beta _{j}\right) },\,\,\, i\notin G\)

$$ \alpha _{g}=a_{k}+a_{l}-1,\,\,\beta _{g}=\left( \left( 1+\frac{c_{l}\cdot c_{k}}{c_{l}+c_{k}}\left( \gamma +{\displaystyle \sum _{j\notin G}}\beta _{j}\right) \right) \right) ^{-1}. $$

Hence \(q_{k}=\beta _{k}\left( p-\alpha _{k}\right) ,\,\,\, q_{l}=\beta _{l}\left( p-\alpha _{l}\right) ,\) where

$$ \beta _{l}=\left( \left( 1+\frac{c_{l}}{c_{k}}+c_{l}\left( \gamma +{\displaystyle \sum _{j\notin G}}\beta _{j}\right) \right) \right) ^{-1},\,\,\, l,\,\, k\in G, $$
$$ \beta _{k}=\left( \left( 1+\frac{c_{k}}{c_{l}}+c_{k}\left( \gamma +{\displaystyle \sum _{j\notin G}}\beta _{j}\right) \right) \right) ^{-1},\,\,\, l,\,\, k\in G, $$
$$ \alpha _{l}=a_{k}+a_{l}-1-\displaystyle \frac{a_{k}-a_{l}}{\beta _{l}\left( c_{l}+c_{k}\right) },\,\,\,\alpha _{k}=a_{k}+a_{l}-1-\displaystyle \frac{a_{l}-a_{k}}{\beta _{k}\left( c_{l}+c_{k}\right) }. $$

The special case considered above can be extended to the general one if the generation company has set G of individual capacities. Then the coefficients for the general supply function of the generation company are:

$$ \alpha _{g}=\sum _{k\in g}a_{k}-1,\,\,\beta _{g}=\displaystyle \left( \left( 1+\displaystyle \frac{1}{{\displaystyle \sum _{k\in G}}\displaystyle \frac{1}{c_{k}}}\left( \gamma +{\displaystyle \sum _{j\notin G}}\beta _{j}\right) \right) \right) ^{-1}. $$

From this we can obtain all coefficients for the supply functions of individual productions.

The Proposition is proved.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Aizenberg, N. (2016). Application of Supply Function Equilibrium Model to Describe the Interaction of Generation Companies in the Electricity Market. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds) Discrete Optimization and Operations Research. DOOR 2016. Lecture Notes in Computer Science(), vol 9869. Springer, Cham. https://doi.org/10.1007/978-3-319-44914-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44914-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44913-5

  • Online ISBN: 978-3-319-44914-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics