Skip to main content

Advances in Biomaterials for the Treatment of Articular Cartilage Defects

  • Chapter
  • First Online:
Regenerative Strategies for the Treatment of Knee Joint Disabilities

Abstract

The management of cartilage defects is one of the most challenging problems for public and medical communities. The complete repairing of the damaged cartilage is a complex procedure, since articular cartilage is characterized by a poor vascularization (absence of blood vessels and nerve source), which limits the capacity to repair itself. Cartilage tissue engineering and regenerative medicine are relatively novel areas of research and may hold the key to the successful treatment of cartilage diseases and disorders. Materials such as natural and synthetic biomaterials have been explored to recreate the microarchitecture of articular cartilage through multilayered biomimetic scaffolds. In this chapter, an overview is given of the natural and synthetic biomaterials used on cartilage repair, describing the procedures to obtain these biomaterials, their chemical structure, their modifications to enhance their properties, and also their medical applications.

Cristiana Gonçalves and Hajer Radhouani have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, Zhao B, Peng J, Wang A, Wang Y, Xu W, Lu S, Yuan M, Guo Q (2014) The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int 2014:648459. doi:10.1155/2014/648459

    Google Scholar 

  2. Gaharwar AK, Schexnailder PJ, Schmidt G (2011) Nanocomposite polymer biomaterials for tissue repair of bone and cartilage: a material science perspective. In: Taylor and Francis Group L (ed) Nanobiomaterials handbook. UK, p 20

    Google Scholar 

  3. Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57

    Article  Google Scholar 

  4. Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cells Mater 25:248–267

    Google Scholar 

  5. Khaled EG, Saleh M, Hindocha S, Griffin M, Khan WS (2011) Tissue engineering for bone production—stem cells, gene therapy and scaffolds. Open Orthop J 5(Suppl 2):289–295. doi:10.2174/1874325001105010289

    Article  Google Scholar 

  6. Lee KB, Wang VT, Chan YH, Hui JH (2012) A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid–a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singapore 41(11):511–517

    Google Scholar 

  7. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262. doi:10.1016/j.addr.2007.08.027

    Article  Google Scholar 

  8. Ong KL, Lovald S, Black J (2015) Orthopaedic biomaterials in research and practice, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  9. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373. doi:10.3390/Ma2020353

    Article  Google Scholar 

  10. Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G, Pignotti E, Marcacci M (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(Suppl 1):156S–166S. doi:10.1177/0363546509351649

    Article  Google Scholar 

  11. Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 20:1–20

    Google Scholar 

  12. Doulabi AH, Mequanint K, Mohammadi H (2014) Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials 7:5327–5355

    Article  Google Scholar 

  13. Gaharwar AK, Sant S, Hancock MJ, Hacking SA (2013) Nanocomposite polymer: biomaterials for tissue repair of bone and cartilage: a material science perspective. In: Gaharwar AK, Sant S, Hancock MJ, Hacking SA (eds) Nanomaterials in tissue engineering: fabrication and applications. Woodhead Publishing, Cambridge, p 468

    Chapter  Google Scholar 

  14. Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Pignatello R (ed) Biomaterials applications for nanomedicine. INTECH Open Access Publisher. doi:10.5772/24118

  15. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  Google Scholar 

  16. Bonzani IC, George JH, Stevens MM (2006) Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol 10(6):568–575. doi:10.1016/j.cbpa.2006.09.009

    Article  Google Scholar 

  17. Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P, Guicheux J, Noel D (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4(4):318–329

    Article  Google Scholar 

  18. Cao Z, Dou C, Dong S (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014:1–8

    Google Scholar 

  19. Hollinger JO (2011) An introduction to biomaterials, 2nd edn. The Biomedical Engineering Series. CRC Press, Boca Raton

    Google Scholar 

  20. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923):59–63. doi:10.1126/science.1169494

    Article  Google Scholar 

  21. Ou KL, Hosseinkhani H (2014) Development of 3D in vitro technology for medical applications. Int J Mol Sci 15(10):17938–17962. doi:10.3390/ijms151017938

    Article  Google Scholar 

  22. Quereshi S, Mhaske A, Raut D, Singh R, Mani A, Patel J (2010) Extraction and partial characterization of collagen from different animal skins. Recent Res Sci Technol 2(9):28–31

    Google Scholar 

  23. Cheng W, Yan-hua R, Fang-gang N, Guo-an Z (2011) The content and ratio of type I and III collagen in skin differ with age and injury. Afr J Biotechnol 10(13):2524–2529

    Google Scholar 

  24. Misra A (2010) Parenteral delivery of peptides and proteins. In: Misra A (ed) Challenges in delivery of therapeutic genomics and proteomics. Elsevier, Burlington

    Google Scholar 

  25. Abedin MZ, Karim AA, Ahmed F, Latiff AA, Gan CY, Che Ghazali F, Islam Sarker MZ (2013) Isolation and characterization of pepsin-solubilized collagen from the integument of sea cucumber (Stichopus vastus). J Sci Food Agric 93(5):1083–1088. doi:10.1002/jsfa.5854

    Article  Google Scholar 

  26. Potaros T, Raksakulthai N, Runglerdkreangkrai J, Worawattanamateekul W (2009) Characteristics of collagen from Nile Tilapia (Oreochromis niloticus) skin isolated by two different methods. Kasetsart J 43:584–593

    Google Scholar 

  27. Aberoumand A (2012) Comparative study between different methods of collagen extraction from fish and its properties. World Appl Sci J 16(3):316–319

    Google Scholar 

  28. Jongjareonrak A (2006) Characterization and functional properties of collagen and gelatin from Bigeye Snapper (Priacanthus macracanthus) and Brownstripe Red Snapper (Lutjanus vitta) Skins., Prince of Songkla University

    Google Scholar 

  29. Noitup P, Garnjanagoonchorn W, Morrissey MT (2005) Fish skin type I collagen characteristic comparison of albacore tuna (Thunnus alalunga) and silver-line grunt (Pomadasys kaakan). J Aquat Food Prod Technol 14(1):17–27

    Article  Google Scholar 

  30. Li H, Liu BL, Gao LZ, Chen HL (2004) Studies on bullfrog skin collagen. Food Chem 84(1):65–69. doi:10.1016/s0308-8146(03)00167-5

    Article  Google Scholar 

  31. Ogawa M, Moody MW, Portier RJ, Bell J, Schexnayder MA, Losso JN (2003) Biochemical properties of black drum and sheepshead seabream skin collagen. J Agric Food Chem 51(27):8088–8092. doi:10.1021/jf034350r

    Article  Google Scholar 

  32. Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68(3):277–281. doi:10.1016/S0308-8146(99)00188-0

    Article  MathSciNet  Google Scholar 

  33. Silva TH, Alves A, Ferreira BM, Oliveira JM, Reys LL, Ferreira RJF, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57(5):276–306

    Google Scholar 

  34. Burke KE, Naughton G, Waldo E, Cassai N (1983) Bovine collagen implant: histologic chronology in pig dermis. J Dermatol Surg Oncol 9(11):889–895

    Article  Google Scholar 

  35. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887. doi:10.3390/Ma3031863

    Article  Google Scholar 

  36. Yudoh K, Karasawa R (2012) A novel biomaterial for cartilage repair generated by self-assembly: creation of a self-organized articular cartilage-like tissue. J Biomater Nanobiotechnol 3:125–129

    Article  Google Scholar 

  37. Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347(3):613–627. doi:10.1007/s00441-011-1243-1

    Article  Google Scholar 

  38. Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85(2):325–333. doi:10.1016/j.carbpol.2011.02.027

    Article  Google Scholar 

  39. Jin J, Wang J, Huang J, Huang F, Fu J, Yang X, Miao Z (2014) Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits. J Biosci Bioeng 118(5):593–598. doi:10.1016/j.jbiosc.2014.05.001

    Article  Google Scholar 

  40. Tabatabai AP, Kaplan DL, Blair DL (2015) Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics. Soft Matter 11(4):756–761. doi:10.1039/c4sm02079k

    Article  Google Scholar 

  41. Sionkowska A, Planecka A, Lewandowska K, Michalska M (2014) The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures. J Photochem Photobiol B 140:301–305. doi:10.1016/j.jphotobiol.2014.08.017

    Article  Google Scholar 

  42. Hashimoto T, Taniguchi Y, Kameda T, Tamada Y, Kurosu H (2015) Changes in the properties and protein structure of silk fibroin molecules in autoclaved fabrics. Polym Degrad Stab 112:20–26. doi:10.1016/j.polymdegradstab.2014.12.007

    Article  Google Scholar 

  43. Lai GJ, Shalumon KT, Chen SH, Chen JP (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297. doi:10.1016/j.carbpol.2014.04.094

    Article  Google Scholar 

  44. Lin L, Hao R, Xiong W, Zhong J (2015) Quantitative analyses of the effect of silk fibroin/nano-hydroxyapatite composites on osteogenic differentiation of MG-63 human osteosarcoma cells. J Biosci Bioeng 119(5):591–595. doi:10.1016/j.jbiosc.2014.10.009

    Article  Google Scholar 

  45. Freddi G (2014) Silk fibroin microfiber and nanofiber scaffolds for tissue engineering and regeneration. In: Kundu S (ed) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead, Cambridge (and imprint of Elsevier), pp 157–190. doi:10.1533/9780857097064.1.157

  46. Jin SH, Kweon H, Park JB, Kim CH (2014) The effects of tetracycline-loaded silk fibroin membrane on proliferation and osteogenic potential of mesenchymal stem cells. J Surg Res 192(2):e1–e9. doi:10.1016/j.jss.2014.08.054

    Article  Google Scholar 

  47. Gong X, Liu H, Ding X, Liu M, Li X, Zheng L, Jia X, Zhou G, Zou Y, Li J, Huang X, Fan Y (2014) Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold. Biomaterials 35(17):4782–4791. doi:10.1016/j.biomaterials.2014.02.050

    Article  Google Scholar 

  48. Saha S, Kundu B, Kirkham J, Wood D, Kundu SC, Yang XB (2013) Osteochondral tissue engineering in vivo a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS ONE 8(11):e80004. doi:10.1371/journal.pone.0080004.t001

    Article  Google Scholar 

  49. Foss C, Merzari E, Migliaresi C, Motta A (2013) Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 14(1):38–47. doi:10.1021/bm301174x

    Article  Google Scholar 

  50. Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B (2007) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885–900. doi:10.1007/s11051-006-9162-x

    Article  Google Scholar 

  51. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301. doi:10.1016/j.actbio.2011.09.037

    Article  Google Scholar 

  52. Silva SS, Gomes ME, Motta A, Mano J, Rodrigues TT, Reis RL, Pinheiro AFM, Migliaresi AC (2008) Novel genipin-cross-linked chitosan silk fibroin sponges for cartilage engineering strategies novel genipin-cross. Biomacromolecules 9:2764–2774. doi:10.1021/bm800874q

    Article  Google Scholar 

  53. Naeimi M, Fathi M, Rafienia M, Bonakdar S (2014) Silk fibroin-chondroitin sulfate-alginate porous scaffolds structural properties and in vitro studies. J Appl Polym Sci. doi:10.1002/app.41048

    Google Scholar 

  54. Vauchel P, Le Roux K, Kaas R, Arhaliass A, Baron R, Legrand J (2009) Kinetics modeling of alginate alkaline extraction from Laminaria digitata. Bioresour Technol 100(3):1291–1296. doi:10.1016/j.biortech.2008.03.005

    Article  Google Scholar 

  55. Nalamothu N, Potluri A, Muppalla MB (2014) Review on marine alginates and its applications. Indo Am J Pharm Res 4(10):4006–4015

    Google Scholar 

  56. Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In: Biopolymers Online. Wiley Online Library

    Google Scholar 

  57. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554. doi:10.3390/molecules14072535

    Article  Google Scholar 

  58. Kloareg B, Quatrano RS (1988) Structure of the cell-walls of marine-algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol 26:259–315

    Google Scholar 

  59. Fertah M, Belfkira A, Em D, Taourirte M, Brouillette F (2015) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 8(1):1–142

    Article  Google Scholar 

  60. Haug A (1964) Composition and properties of alginates. Norwegian Institute of Technology, Trondheim

    Google Scholar 

  61. Haug A, Larsen B (1966) A study on the constitution of alginic acid by partial acid hydrolysis. Proc Int Seaweed Symp 5:271–277

    Google Scholar 

  62. Haug A, Larsen B, Smidsrød O (1966) A study of the constitution of alginic acid by partial hydrolysis. Acta Chem Scand 20:183–190

    Article  Google Scholar 

  63. Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE (2012) Alginates as biomaterials in tissue engineering. J Carbohydr Chem 37:227–258

    Google Scholar 

  64. Rehm AHB (2009) Alginates: biology and applications. Springer, London

    Book  Google Scholar 

  65. Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26(15):2455–2465. doi:10.1016/j.biomaterials.2004.06.044

    Article  Google Scholar 

  66. Li C, Ni C, Xiong C, Li Q (2009) Preparation and drug release of hydrophobically modified alginate. Chemistry 1:93–96

    Google Scholar 

  67. Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr Polym 47(3):267–276. doi:10.1016/S0144-8617(01)00178-3

    Article  Google Scholar 

  68. Pluemsab W, Sakairi N, Furuike T (2005) Synthesis and inclusion property of alpha-cyclodextrin-linked alginate. Polymer 46(23):9778–9783. doi:10.1016/J.Polymer.08.005

    Article  Google Scholar 

  69. Pelletier S, Hubert P, Payan E, Marchal P, Choplin L, Dellacherie E (2001) Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties. J Biomed Mater Res 54(1):102–108

    Article  Google Scholar 

  70. Bu HT, Kjoniksen AL, Elgsaeter A, Nystrom B (2006) Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution—calorimetric, rheological, and turbidity studies. Colloid Surf A 278(1–3):166–174. doi:10.1016/J.Colsurfa.12.016

    Article  Google Scholar 

  71. Yang J-S, Xie Y-J, He W (2010) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84(1):33–39

    Article  Google Scholar 

  72. Galant C, Kjoniksen AL, Nguyen GT, Knudsen KD, Nystrom B (2006) Altering associations in aqueous solutions of a hydrophobically modified alginate in the presence of beta-cyclodextrin monomers. J Phys Chem B 110(1):190–195. doi:10.1021/jp0518759

    Article  Google Scholar 

  73. Park H, Lee KY (2014) Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res Part A 102(12):4519–4525. doi:10.1002/jbm.a.35126

    Google Scholar 

  74. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222. doi:10.1016/j.biomaterials.2003.10.045

    Article  Google Scholar 

  75. Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. In: StemBook. Cambridge (MA)

    Google Scholar 

  76. Hannouche D, Terai H, Fuchs JR, Terada S, Zand S, Nasseri BA, Petite H, Sedel L, Vacanti JP (2007) Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells. Tissue Eng 13(1):87–99. doi:10.1089/ten.2006.0067

    Article  Google Scholar 

  77. Wayne JS, McDowell CL, Shields KJ, Tuan RS (2005) In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng 11(5–6):953–963. doi:10.1089/ten.2005.11.953

    Article  Google Scholar 

  78. Jin X, Sun Y, Zhang K, Wang J, Shi T, Ju X, Lou S (2007) Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28(19):2994–3003. doi:10.1016/j.biomaterials.2007.03.002

    Article  Google Scholar 

  79. Dunne LW, Iyyanki T, Hubenak J, Mathur AB (2014) Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications. Acta Biomater 10(8):3630–3640. doi:10.1016/j.actbio.2014.05.005

    Article  Google Scholar 

  80. Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32(25):5773–5781. doi:10.1016/j.biomaterials.2011.04.061

    Article  Google Scholar 

  81. Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J (2014) Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 10(1):276–288. doi:10.1016/j.actbio.2013.09.002

    Article  Google Scholar 

  82. Baran ET, Tuzlakoglu K, Mano JF, Reis RL (2012) Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes. Mater Sci Eng C 32(6):1314–1322. doi:10.1016/j.msec.2012.02.015

    Article  Google Scholar 

  83. Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79(7):1324–1335

    Article  Google Scholar 

  84. Zhang K, Zhang Y, Yan S, Gong L, Wang J, Chen X, Cui L, Yin J (2013) Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomater 9(7):7276–7288. doi:10.1016/j.actbio.2013.03.025

    Article  Google Scholar 

  85. Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C 33(8):4786–4794. doi:10.1016/j.msec.2013.07.043

    Article  Google Scholar 

  86. Sionkowska A, Płanecka A (2013) Surface properties of thin films based on the mixtures of chitosan and silk fibroin. J Mol Liq 186:157–162. doi:10.1016/j.molliq.2013.07.008

    Article  Google Scholar 

  87. Oprenyeszk F, Chausson M, Maquet V, Dubuc JE, Henrotin Y (2013) Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular injection of alginate-chitosan beads dispersed in an hydrogel. Osteoarthr Cartil 21(8):1099–1107. doi:10.1016/j.joca.2013.04.017

    Article  Google Scholar 

  88. Lafantaisie-Favreau CH, Guzman-Morales J, Sun J, Chen G, Harris A, Smith TD, Carli A, Henderson J, Stanish WD, Hoemann CD (2013) Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC Musculoskelet Disord 14:27. doi:10.1186/1471-2474-14-27

    Article  Google Scholar 

  89. Bell AD, Lascau-Coman V, Sun J, Chen G, Lowerison MW, Hurtig MB, Hoemann CD (2012) Bone-induced chondroinduction in sheep jamshidi biopsy defects with and without treatment by subchondral chitosan-blood implant: 1-day, 3-week, and 3-month repair. Cartilage 4(2):131–143. doi:10.1177/1947603512463227

    Article  Google Scholar 

  90. Mathieu C, Chevrier A, Lascau-Coman V, Rivard GE, Hoemann CD (2013) Stereological analysis of subchondral angiogenesis induced by chitosan and coagulation factors in microdrilled articular cartilage defects. Osteoarthr Cartil 21(6):849–859. doi:10.1016/j.joca.2013.03.012

    Article  Google Scholar 

  91. Zhao F, He W, Yan Y, Zhang H, Zhang G, Tian D, Gao H (2014) The application of polysaccharide biocomposites to repair cartilage defects. Int J Polym Sci 2014:9

    Article  Google Scholar 

  92. Meyer K, Palmer JW (1934) The polysaccharide of the vitreous humor. J Biol Chem 107:629–634

    Google Scholar 

  93. Murado MA, Montemayor MI, Cabo ML, Vazquez JA, Gonzalez MP (2012) Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod Process 90(C3):491–498. doi:10.1016/J.Fbp.11.002

    Article  Google Scholar 

  94. Shen B, Wei A, Bhargav D, Kishen T, Diwan AD (2010) Hyaluronan: its potential application in intervertebral disc regeneration. Orthop Res Rev 2:17–26

    Article  Google Scholar 

  95. Boeriu CG, Springer J, Kooy FK, van den Broek LAM, Eggink G (2013) Production methods for hyaluronan. Int J Carbohydr Chem 2013:14

    Article  Google Scholar 

  96. Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact 10:99. doi:10.1186/1475-2859-10-99

    Article  Google Scholar 

  97. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92(2):1262–1279. doi:10.1016/j.carbpol.2012.10.028

    Article  Google Scholar 

  98. Collins MN, Birkinshaw C (2008) Physical properties of crosslinked hyaluronic acid hydrogels. J Mater Sci Mater Med 19(11):3335–3343. doi:10.1007/s10856-008-3476-4

    Article  Google Scholar 

  99. Kang JY, Chung CW, Sung JH, Park BS, Choi JY, Lee SJ, Choi BC, Shim CK, Chung SJ, Kim DD (2009) Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes. Int J Pharm 369(1–2):114–120. doi:10.1016/j.ijpharm.2008.11.008

    Article  Google Scholar 

  100. Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32(34):8771–8782. doi:10.1016/j.biomaterials.2011.08.073

    Article  Google Scholar 

  101. Julovi SM, Ito H, Nishitani K, Jackson CJ, Nakamura T (2011) Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38. J Orthop Res 29(2):258–264. doi:10.1002/jor.21216

    Article  Google Scholar 

  102. Laroui H, Grossin L, Leonard M, Stoltz JF, Gillet P, Netter P, Dellacherie E (2007) Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules 8(12):3879–3885. doi:10.1021/bm700836y

    Article  Google Scholar 

  103. Gomoll AH (2009) Serum levels of hyaluronic acid and chondroitin sulfate as a non-invasive method to evaluate healing after cartilage repair procedures. Arthritis Res Ther 11(4):118. doi:10.1186/ar2730

    Article  Google Scholar 

  104. Unterman SA, Gibson M, Lee JH, Crist J, Chansakul T, Yang EC, Elisseeff JH (2012) Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 18(23–24):2497–2506. doi:10.1089/ten.TEA.2011.0711

    Article  Google Scholar 

  105. Osmalek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466(1–2):328–340. doi:10.1016/j.ijpharm.2014.03.038

    Article  Google Scholar 

  106. da Silva RMP, Lopez-Perez PM, Elvira C, Mano JF, Roman JS, Reis RL (2008) Poly(N-Isopropylacrylamide) surface-grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnol Bioeng 101(6):1321–1331. doi:10.1002/Bit.22004

    Article  Google Scholar 

  107. Novac O, Lisa G, Profire L, Tuchilus C, Popa MI (2014) Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications. Mater Sci Eng 35:291–299. doi:10.1016/j.msec.2013.11.016

    Article  Google Scholar 

  108. Kang D, Zhang F, Zhang H (2015) Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids. Mater Chem Phys 149–150:129–139. doi:10.1016/j.matchemphys.2014.09.055

    Article  Google Scholar 

  109. Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL (2010) Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res Part A 93(3):852–863. doi:10.1002/jbm.a.32574

    Google Scholar 

  110. Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93(2):670–678. doi:10.1016/j.carbpol.2013.01.030

    Article  Google Scholar 

  111. da Silva LP, Cerqueira MT, Sousa RA, Reis RL, Correlo VM, Marques AP (2014) Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomater 10(11):4787–4797. doi:10.1016/j.actbio.2014.07.009

    Article  Google Scholar 

  112. Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, Khademhosseini A, Reis RL (2010) Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29):7494–7502. doi:10.1016/j.biomaterials.2010.06.035

    Article  Google Scholar 

  113. Tang Y, Sun J, Fan H, Zhang X (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88(1):46–53. doi:10.1016/j.carbpol.2011.11.058

    Article  Google Scholar 

  114. Shi YG, Meng YC, Li JR, Chen J, Liu YH, Bai X (2014) Chondroitin sulfate: extraction, purification, microbial and chemical synthesis. J Chem Technol Biot 89(10):1445–1465. doi:10.1002/Jctb.4454

    Article  Google Scholar 

  115. Jerosch J (2011) Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially omega-3 fatty acids. Int J Rheumatol 2011:17

    Article  Google Scholar 

  116. Michelacci YM, Dietrich CP (1976) Structure of chondroitin sulfates. Analyses of the products formed from chondroitin sulfates A and C by the action of the chondroitinases C and AC from Flavobacterium heparinum. Biochim Biophys Acta 451(2):436–443

    Article  Google Scholar 

  117. Seno N, Meyer K (1963) Comparative biochemistry of skin; the mucopolysaccharides of shark skin. Biochim Biophys Acta 78:258–264

    Article  Google Scholar 

  118. Chen JS, Chang CM, Wu JC, Wang SM (2000) Shark cartilage extract interferes with cell adhesion and induces reorganization of focal adhesions in cultured endothelial cells. J Cell Biochem 78(3):417–428

    Article  Google Scholar 

  119. Srinivasan SR, Radhakrishinamurthy B, Dalferes ER Jr, Berenson GS (1969) Glycosaminoglycans from squid skin. Comp Biochem Physiol 28(1):169–176

    Article  Google Scholar 

  120. Karamanos NK, Aletras AJ, Antonopoulos CA, Tsegenidis T, Tsiganos CP, Vynios DH (1988) Extraction and fractionation of proteoglycans from squid skin. Biochim Biophys Acta 966(1):36–43

    Article  Google Scholar 

  121. Vazquez JA, Rodriguez-Amado I, Montemayor MI, Fraguas J, Gonzalez Mdel P, Murado MA (2013) Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar Drugs 11(3):747–774. doi:10.3390/md11030747

    Article  Google Scholar 

  122. Sugahara K, Tanaka Y, Yamada S, Seno N, Kitagawa H, Haslam SM, Morris HR, Dell A (1996) Novel sulfated oligosaccharides containing 3-O-sulfated glucuronic acid from king crab cartilage chondroitin sulfate K. Unexpected degradation by chondroitinase ABC. J Biol Chem 271(43):26745–26754

    Article  Google Scholar 

  123. Borsig L, Wang LC, Cavalcante MCM, Cardilo-Reis L, Ferreira PL, Mourao PAS, Esko JD, Pavao MSG (2007) Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber—effect on tumor metastasis and neutrophil recruitment. J Biol Chem 282(20):14984–14991. doi:10.1074/Jbc.M610560200

    Article  Google Scholar 

  124. Mano JF (2013) Biomimetic approaches for biomaterials development. Wiley, New York

    Google Scholar 

  125. Kim S-K (2015) Springer handbook of marine biotechnology. Springer, London

    Book  Google Scholar 

  126. Cole AG, Hall BK (2004) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology (Jena) 107(4):261–273. doi:10.1016/j.zool.2004.05.001

    Article  Google Scholar 

  127. Lai JY, Li YT, Cho CH, Yu TC (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomed 7:1101–1114. doi:10.2147/IJN.S28753

    Article  Google Scholar 

  128. Muller FA, Muller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963. doi:10.1016/j.biomaterials.2006.02.031

    Article  Google Scholar 

  129. Orellana J (2013) Advanced biomaterials from renewable resources: an investigation on cellulose nanocrystal composites and CO2 extraction of rendered materials. Clemson University, Clemson

    Google Scholar 

  130. Yodmuang S, McNamara SL, Nover AB, Mandal BB, Agarwal M, Kelly TA, Chao PH, Hung C, Kaplan DL, Vunjak-Novakovic G (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36. doi:10.1016/j.actbio.2014.09.032

    Article  Google Scholar 

  131. Khanarian NT, Haney NM, Burga RA, Lu HH (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21):5247–5258. doi:10.1016/j.biomaterials.2012.03.076

    Article  Google Scholar 

  132. Zignego DL, Jutila AA, Gelbke MK, Gannon DM, June RK (2014) The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes. J Biomech 47(9):2143–2148. doi:10.1016/j.jbiomech.2013.10.051

    Article  Google Scholar 

  133. Masson P, Beinert G, Franta E, Rempp P (1982) Synthesis of polyethylene oxide macromers. Polym Bull 7(1):17–22

    Article  Google Scholar 

  134. Dai X, Chen X, Yang L, Foster S, Coury AJ, Jozefiak TH (2011) Free radical polymerization of poly(ethylene glycol) diacrylate macromers: impact of macromer hydrophobicity and initiator chemistry on polymerization efficiency. Acta Biomater 7(5):1965–1972. doi:10.1016/j.actbio.2011.01.005

    Article  Google Scholar 

  135. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49(36):6288–6308. doi:10.1002/anie.200902672

    Article  Google Scholar 

  136. Konradi R, Acikgoz C, Textor M (2012) Polyoxazolines for nonfouling surface coatings–a direct comparison to the gold standard PEG. Macromol Rapid Commun 33(19):1663–1676. doi:10.1002/marc.201200422

    Article  Google Scholar 

  137. Sah H, Thoma LA, Desu HR, Sah E, Wood GC (2013) Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomed 8:747–765. doi:10.2147/IJN.S40579

    Article  Google Scholar 

  138. Bencherif SA, Srinivasan A, Sheehan JA, Walker LM, Gayathri C, Gil R, Hollinger JO, Matyjaszewski K, Washburn NR (2009) End-group effects on the properties of PEG-co-PGA hydrogels. Acta Biomater 5(6):1872–1883. doi:10.1016/j.actbio.2009.02.030

    Article  Google Scholar 

  139. Kinard LA, Kasper FK, Mikos AG (2012) Synthesis of oligo(poly(ethylene glycol) fumarate). Nat Protoc 7(6):1219–1227. doi:10.1038/nprot.2012.055

    Article  Google Scholar 

  140. Micic M, Jeremic M, Radotic K, Leblanc RM (2000) A comparative study of enzymatically and photochemically polymerized artificial lignin supramolecular structures using environmental scanning electron microscopy. J Colloid Interface Sci 231(1):190–194. doi:10.1006/jcis.2000.7136

    Article  Google Scholar 

  141. Hutanu D, Frishberg MD, Guo L, Darie CC (2014) Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod Chem Appl 2(12):2

    Google Scholar 

  142. Ferretti M, Marra KG, Kobayashi K, Defail AJ, Chu CR (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12(9):2657–2663. doi:10.1089/ten.2006.12.2657

    Article  Google Scholar 

  143. Eswaramoorthy R, Chang CC, Wu SC, Wang GJ, Chang JK, Ho ML (2012) Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater 8(6):2254–2262. doi:10.1016/j.actbio.2012.03.015

    Article  Google Scholar 

  144. Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B 113:352–360. doi:10.1016/j.colsurfb.2013.09.028

    Article  Google Scholar 

  145. Morille M, Van-Thanh T, Garric X, Cayon J, Coudane J, Noel D, Venier-Julienne MC, Montero-Menei CN (2013) New PLGA-P188-PLGA matrix enhances TGF-beta3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells. J Control Release 170(1):99–110. doi:10.1016/j.jconrel.2013.04.017

    Article  Google Scholar 

  146. Chang NJ, Lin CC, Li CF, Wang DA, Issariyaku N, Yeh ML (2012) The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 33(11):3153–3163. doi:10.1016/j.biomaterials.2011.12.054

    Article  Google Scholar 

  147. Rotunda AM, Narins RS (2006) Poly-L-lactic acid: a new dimension in soft tissue augmentation. Dermatol Ther 19(3):151–158. doi:10.1111/j.1529-8019.2006.00069.x

    Article  Google Scholar 

  148. Narins RS, Baumann L, Brandt FS, Fagien S, Glazer S, Lowe NJ, Monheit GD, Rendon MI, Rohrich RJ, Werschler WP (2010) A randomized study of the efficacy and safety of injectable poly-l-lactic acid versus human-based collagen implant in the treatment of nasolabial fold wrinkles. J Am Acad Dermatol 62(3):448–462

    Article  Google Scholar 

  149. Ramos AR (2014) Applications of PLA-poly(lactic acid) in tissue engineering and delivery systems. Dissertation, Biomedical Materials and Devices from University of Aveiro (Portugal).

    Google Scholar 

  150. Lai WC (2011) Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol. J Phys Chem B 115(38):11029–11037. doi:10.1021/jp2037312

    Article  Google Scholar 

  151. Hyun MY, Lee Y, No YA, Yoo KH, Kim MN, Hong CK, Chang SE, Won CH, Kim BJ (2015) Efficacy and safety of injection with poly-L-lactic acid compared with hyaluronic acid for correction of nasolabial fold: a randomized, evaluator-blinded, comparative study. Clin Exp Dermatol 40(2):129–135. doi:10.1111/ced.12499

    Article  Google Scholar 

  152. Danesin R, Brun P, Roso M, Delaunay F, Samouillan V, Brunelli K, Iucci G, Ghezzo F, Modesti M, Castagliuolo I, Dettin M (2012) Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h-osteoblast adhesion and modulate differentiation-associated gene expression. Bone 51(5):851–859. doi:10.1016/j.bone.2012.08.119

    Article  Google Scholar 

  153. Pan L, Pei X, He R, Wan Q, Wang J (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B 93:226–234. doi:10.1016/j.colsurfb.2012.01.011

    Article  Google Scholar 

  154. Chen C-H, Liu J, Chua C-K, Chou S-M, Shyu V, Chen J-P (2014) Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology. Materials 7(3):2104–2119. doi:10.3390/ma7032104

    Article  Google Scholar 

  155. Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5(10):839–848

    Article  Google Scholar 

  156. Shen ZY, Terao K, Maki Y, Dobashi T, Ma GH, Yamamoto T (2006) Synthesis and phase behavior of aqueous poly(N-isopropylacrylamide-co-acrylamide), poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) and poly (N-isopropylacrylamide-co-2-hydroxyethyl methacrylate). Colloid Polym Sci 284(9):1001–1007. doi:10.1007/S00396-005-1442-Y

    Article  Google Scholar 

  157. Schilli CM, Zhang MF, Rizzardo E, Thang SH, Chong YK, Edwards K, Karlsson G, Muller AHE (2004) A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 37(21):7861–7866. doi:10.1021/Ma035838w

    Article  Google Scholar 

  158. Bearat HH, Lee BH, Valdez J, Vernon BL (2011) Synthesis, characterization and properties of a physically and chemically gelling polymer system using poly(NIPAAm-co-HEMA-acrylate) and poly(NIPAAm-co-cysteamine). J Biomater Sci 22:1299–1318

    Article  Google Scholar 

  159. Spasojevic M, Vorenkamp J, Jansen MRPACS, de Vos P, Schouten AJ (2014) Synthesis and phase behavior of poly(N-isopropylacrylamide)-b-poly(L-lysine hydrochloride) and poly(N-Isopropylacrylamide-co-acrylamide)-b-poly(L-lysine hydrochloride). Materials 7(7):5305–5326. doi:10.3390/Ma7075305

    Article  Google Scholar 

  160. Robb SA, Lee BH, McLemore R, Vernon BL (2007) Simultaneously physically and chemically gelling polymer system utilizing a poly(NIPAAm-co-cysteamine)-based copolymer. Biomacromolecules 8(7):2294–2300. doi:10.1021/bm070267r

    Article  Google Scholar 

  161. Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS (2007) Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E (eds) Topics in tissue engineering, vol 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gonçalves, C., Radhouani, H., Oliveira, J.M., Reis, R.L. (2017). Advances in Biomaterials for the Treatment of Articular Cartilage Defects. In: Oliveira, J., Reis, R. (eds) Regenerative Strategies for the Treatment of Knee Joint Disabilities. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-44785-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44785-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44783-4

  • Online ISBN: 978-3-319-44785-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics