Skip to main content

Kronecker Decomposition for Image Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9822))

Abstract

We propose an image decomposition technique that captures the structure of a scene. An image is decomposed into a matrix that represents the adjacency between the elements of the image and their distance. Images decomposed this way are then classified using a maximum margin regression (MMR) approach where the normal vector of the separating hyperplane maps the input feature vectors into the outputs vectors. Multiclass and multilabel classification are native to MMR, unlike other more classical maximum margin approaches, like SVM. We have tested our approach with the ImageCLEF 2015 multi-label classification task, Pascal VOC and Flickr dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  2. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2014)

    Article  Google Scholar 

  3. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  4. Villegas, M., et al.: General overview of ImageCLEF at the CLEF 2015 Labs. In: Mothe, J., Savoy, J., Kamps, J., Pinel-Sauvagnat, K., Jones, G., San Juan, E., Capellato, L., Ferro, N. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 444–461. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24027-5_45

    Chapter  Google Scholar 

  5. Seco, G., de Herrera, A., Müller, H., Bromuri, S.: Overview of the ImageCLEF 2015 medical classification task. In: Working Notes of CLEF 2015. CEUR Workshop Proceedings (2015). CEUR-WS.org

  6. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: NIPS (2003)

    Google Scholar 

  7. Altun, Y., Tsochantaridis, I., Hofmann, T.: Hidden markov support vector machines. In: ICML 2003, pp. 3–10 (2003)

    Google Scholar 

  8. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. (JMLR) 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Learning hierarchical multi-category text classification models. In: ICML (2005)

    Google Scholar 

  10. Bakir, G.H., Hofmann, T., Scholkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N. (eds.): Predicting Structured Data. MIT Press, Cambridge (2007)

    Google Scholar 

  11. Loan, C.: The ubiquitous kronecker product. J. Comput. Appl. Math. 123, 85–100 (2000). The nearest Kronecker product

    Article  MathSciNet  MATH  Google Scholar 

  12. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results (2007). http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

  13. Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: MIR 2008: Proceedings of the 2008 ACM International Conference on Multimedia Information Retrieval. ACM, New York (2008)

    Google Scholar 

  14. Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In: International Conference on Computer Vision, pp. 309–316, September 2009

    Google Scholar 

  15. INRIA: Inria features for image annotation and classification data sets. http://lear.inrialpes.fr/people/guillaumin/data.php

  16. Xiong, H., Szedmak, S., Piater, J.: Scalable, accurate image annotation with joint SVMs and output kernels. Neurocomputing 169, 205–214 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

The research leading to these results has received funding from the EU seventh Framework Programme FP7/2007-2013 under grant agreement no. 270273, Xperience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Fontanella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fontanella, S., Rodríguez-Sánchez, A.J., Piater, J., Szedmak, S. (2016). Kronecker Decomposition for Image Classification. In: Fuhr, N., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2016. Lecture Notes in Computer Science(), vol 9822. Springer, Cham. https://doi.org/10.1007/978-3-319-44564-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44564-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44563-2

  • Online ISBN: 978-3-319-44564-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics