Skip to main content

On the Complexity of Computing Treebreadth

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9843))

Included in the following conference series:

Abstract

During the last decade, metric properties of the bags of tree-decompositions of graphs have been studied. Roughly, the length and the breadth of a tree-decomposition are the maximum diameter and radius of its bags respectively. The treelength and the treebreadth of a graph are the minimum length and breadth of its tree-decompositions respectively. Pathlength and pathbreadth are defined similarly for path-decompositions. In this paper, we answer open questions of [Dragan and Köhler, Algorithmica 2014] and [Dragan, Köhler and Leitert, SWAT 2014] about the computational complexity of treebreadth, pathbreadth and pathlength. Namely, we prove that computing these graph invariants is NP-hard. We further investigate graphs with treebreadth one, i.e., graphs that admit a tree-decomposition where each bag has a dominating vertex. We show that it is NP-complete to decide whether a graph belongs to this class. We then prove some structural properties of such graphs which allows us to design polynomial-time algorithms to decide whether a bipartite graph, resp., a planar graph, has treebreadth one.

This work is partially supported by ANR project Stint under reference ANR-13-BS02-0007 and ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We aim at turning the separator N(v) into a clique. However, we cannot do that directly since it would break the distances in G, and the graph needs to stay planar.

  2. 2.

    When v is of Type 1 we call the algorithm on \(G'\), obtained from \(G {\setminus } v\) by contracting the internal nodes of \(\varPi _v\) to an edge, in order to obtain a quadratic complexity.

References

  1. Abu-Ata, M., Dragan, F.: Metric tree-like structures in real-world networks: an empirical study. Networks 67, 49–68 (2016)

    Article  MathSciNet  Google Scholar 

  2. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, A., Pogorelcnik, R., Simonet, G.: An introduction to clique minimal separator decomposition. Algorithms 3(2), 197–215 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.: Treewidth: Characterizations, applications, and computations (2006)

    Google Scholar 

  5. Bodlaender, H.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: ICALP 1992, Vienna, Austria, pp. 273–283 (1992)

    Google Scholar 

  7. Brandstädt, A., Dragan, F., Chepoi, V., Voloshin, V.: Dually chordal graphs. SIAM J. Discrete Math. 11(3), 437–455 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chechik, S., Larkin, D., Roditty, L., Schoenebeck, G., Tarjan, R., Williams, V.V.: Better approximation algorithms for the graph diameter. In: ACM SODA 2014, pp. 1041–1052. SIAM (2014)

    Google Scholar 

  9. Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of \(\delta \)-hyperbolic geodesic spaces and graphs. In: SCG 2008, New York, NY, USA, pp. 59–68. ACM (2008)

    Google Scholar 

  10. Coudert, D., Ducoffe, G., Nisse, N.: To approximate treewidth, use treelength! SIAM J. Discrete Math. (to appear, 2016)

    Google Scholar 

  11. de Montgolfier, F., Soto, M., Viennot, L.: Treewidth and hyperbolicity of the internet. In: 2011 10th IEEE International Symposium on Network Computing and Applications (NCA), pp. 25–32, August 2011

    Google Scholar 

  12. Dourisboure, Y., Dragan, F., Gavoille, C., Chenyu, Y.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383(1), 34–44 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307(16), 2008–2029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dragan, F., Köhler, E.: An approximation algorithm for the tree t-spanner problem on unweighted graphs via generalized chordal graphs. Algorithmica 69(4), 884–905 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length of a graph. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 158–169. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 276–288. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  17. Ducoffe, G., Legay, S., Nisse, N.: On computing tree and path decompositions with metric constraints on the bags. Technical Report RR-8842 (2016)

    Google Scholar 

  18. Krauthgamer, R., Lee, J.: Algorithms on negatively curved spaces. In: FOCS 2006, pp. 119–132. IEEE (2006)

    Google Scholar 

  19. Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.: Graph minors. II: algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C., Liu, T., Jiang, W., Xu, K.: Feedback vertex sets on tree convex bipartite graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 95–102. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Wu, Y., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth and related problems. J. Artif. Intell. Res. (JAIR) 49, 569–600 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ducoffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ducoffe, G., Legay, S., Nisse, N. (2016). On the Complexity of Computing Treebreadth. In: Mäkinen, V., Puglisi, S., Salmela, L. (eds) Combinatorial Algorithms. IWOCA 2016. Lecture Notes in Computer Science(), vol 9843. Springer, Cham. https://doi.org/10.1007/978-3-319-44543-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44543-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44542-7

  • Online ISBN: 978-3-319-44543-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics