Skip to main content

Spacetime Is Doomed

  • Chapter
  • First Online:

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Theoretical physicists have not wanted for imagination when it comes to developing a quantum theory of gravity. String theory, loop quantum gravity, causal-set theory, twistor theory: the approaches are diverse and the disagreements among their proponents are often vehement. And yet they have a common feature: that classical spacetime is not a fundamental ingredient of the world, but a construction consisting of more fundamental degrees of freedom. Those degrees of freedom become structured in very specific ways to give rise to the observed features of classical spacetime. I’ll discuss the interpretational implications of several leading theories.

Edited excerpt from “Spacetime Is Doomed” from SPOOKY ACTION AT A DISTANCE by George Musser. Copyright © 2015 by George Musser. Reprinted by permission of Farrar, Straus and Giroux, LLC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Barbour, The End of Time: the Next Revolution in Physics, 18.

  2. 2.

    Bombelli et al., “Space-Time as a Causal Set.”

  3. 3.

    Riemann, “On the Hypotheses Which Lie at the Bases of Geometry,” 37.

  4. 4.

    Dowker, “Causal Sets and the Deep Structure of Spacetime,” 454; Henson, “The Causal Set Approach to Quantum Gravity,” 405.

  5. 5.

    Misner, Thorne, and Wheeler, Gravitation, 1203–1212; Bohm and Hiley, The Undivided Universe: an Ontological Interpretation of Quantum Theory, 374–378; Penrose, The Road to Reality: a Complete Guide to the Laws of the Universe‎, 946–950; Finkelstein, “Space-Time Code.”

  6. 6.

    Konopka, Markopoulou, and Severini, “Quantum Graphity: a Model of Emergent Locality.”

  7. 7.

    Stanley et al., “Scale Invariance and Universality: Organizing Principles in Complex Systems.”

  8. 8.

    Hamma and Markopoulou, “Background-Independent Condensed Matter Models for Quantum Gravity.”

  9. 9.

    Loll, Ambjørn, and Jurkiewicz, “The Universe From Scratch.”

  10. 10.

    Banks et al., “M Theory as a Matrix Model: a Conjecture.”

  11. 11.

    Musser, The Complete Idiot's Guide to String Theory, 155.

  12. 12.

    Banks, “The State of Matrix Theory,” 342–343; Martinec, “Evolving Notions of Geometry in String Theory,” 167–168.

  13. 13.

    Pettit, The Common Mind: an Essay on Psychology, Society, and Politics, 166–173.

  14. 14.

    Heller and Sasin, “Einstein-Podolski-Rosen Experiment From Noncommutative Quantum Gravity”; Heller and Sasin, “Nonlocal Phenomena From Noncommutative Pre-Planckian Regime.”

  15. 15.

    Susskind and Witten, “The Holographic Bound in Anti-De Sitter Space”; Balasubramanian and Kraus, “Spacetime and the Holographic Renormalization Group.”

  16. 16.

    Fletcher, “Nonlinear Dynamics and Chaos in Musical Instruments.”

  17. 17.

    Balasubramanian et al., “Holographic Probes of Anti–De Sitter Spacetimes”; Heemskerk et al., “Holography From Conformal Field Theory.”

  18. 18.

    Nishioka, Ryu, and Takayanagi, “Holographic Entanglement Entropy: an Overview”; Van Raamsdonk, “Building Up Spacetime with Quantum Entanglement”; Swingle, “Constructing Holographic Spacetimes Using Entanglement Renormalization.”

  19. 19.

    Arkani-Hamed and Trnka, “The Amplituhedron.”

  20. 20.

    Bern et al., “Fusing Gauge Theory Tree Amplitudes Into Loop Amplitudes.”

References

  1. Arkani-Hamed, N., & Trnka, J. (2014). The Amplituhedron. Journal of High Energy Physics (10):30.

    Google Scholar 

  2. Balasubramanian, V., Kraus, P., Lawrence, A., & Trivedi, S. (1999). Holographic probes of anti–de sitter spacetimes. Physical Review D, 59(10), 104021.

    Article  ADS  MathSciNet  Google Scholar 

  3. Balasubramanian, V. Per Kraus Spacetime and the holographic renormalization group. Physical Review Letters 83(18).

    Google Scholar 

  4. Banks, T. (1998). The State of matrix theory. Nuclear Physics B-Proceedings Supplements, 62(1), 341–347.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Banks, T, Fischler, W, Shenker, S. H., & Susskind, L. (1997). M theory as a matrix model: a conjecture. Physical Review D, 55(8), .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barbour, J. B. (2001). The end of time: the next revolution in physics. New York: Oxford University Press.

    Google Scholar 

  7. Bern, Z., Dixon, L. J., Dunbar, D. C., & Kosower, D. A. (1995). Fusing gauge theory tree amplitudes into loop amplitudes. Nuclear Physics B, 435(1), 59–101.

    Article  ADS  Google Scholar 

  8. Bohm, D., & Hiley, B. J. (1995). The undivided universe: an ontological interpretation of quantum theory. Reprint. London: Routledge.

    MATH  Google Scholar 

  9. Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-Time as a causal set. Physical Review Letters, 59(5), 521–524.

    Article  ADS  MathSciNet  Google Scholar 

  10. Dowker, F. (2005). Causal sets and the deep structure of spacetime. In A. Ashtekar (Ed.) One hundred years of relativity (pp. 445–64). Hackensack, N.J: World Scientific.

    Google Scholar 

  11. Finkelstein, D. R. (1969). Space-Time code. Physical Review, 184(5), 1261–1271.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fletcher, N. H. (1993). Nonlinear dynamics and chaos in musical instruments. In Green, D. G., BOssomaier, T. (Eds.) Complex systems: from biology to computation (pp. 106–117). Amsterdam: IOS Press.

    Google Scholar 

  13. Hamma, A., & Markopoulou, F. (2011). Background-independent condensed matter models for quantum gravity. New Journal of Physics, 13(9), 095006.

    Article  ADS  Google Scholar 

  14. Heemskerk, I., Penedones, J., Polchinski, J., & Sully, J. (2009). Holography from conformal field theory. Journal of High Energy Physics, 2009(10), 079.

    Article  ADS  MathSciNet  Google Scholar 

  15. Heller, M., & Sasin, W. (1998). Einstein-Podolski-Rosen experiment from noncommutative quantum gravity. AIP Conference Proceedings, 453, 234–241.

    Article  ADS  MATH  Google Scholar 

  16. Heller, M., Sasin, W. (1999). Nonlocal phenomena from noncommutative pre-planckian regime. arXiv.org, 17 Jun 1999.

    Google Scholar 

  17. Henson, J. (2009). The causal set approach to quantum gravity. In D. Oriti (Ed.) Approaches to quantum gravity: toward a new understanding of space, time and matter (pp. 393–413). New York: Cambridge University Pres.

    Google Scholar 

  18. Konopka, T., Markopoulou, F., Severini, S. (2008). Quantum graphity: a model of emergent locality. Physical Review D 77(10).

    Google Scholar 

  19. Loll, R., Ambjørn, J., Jurkiewicz, J. (2006). The universe from scratch. Contemporary Physics 47(2).

    Google Scholar 

  20. Martinec, E. J. (2013). Evolving notions of geometry in string theory. Foundations of Physics, 43(1), 156–173.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Misner, C. W., Kip, S. (1973). Thorne, and John Archibald wheeler. In Gravitation, 1st edn. San Francisco: W. H. Freeman.

    Google Scholar 

  22. Musser, G. S., Jr. (2008). The complete idiot’s guide to string theory. New York: Penguin Group.

    Google Scholar 

  23. Nishioka, T., Ryu, S., & Takayanagi, T. (2009). Holographic entanglement entropy: an overview. Journal of Physics a: Mathematical and Theoretical, 42(50), 504008.

    Article  MathSciNet  MATH  Google Scholar 

  24. Penrose, R. (2005). The road to reality: A complete guide to the laws of the universe‎. London: Jonathan Cape.

    MATH  Google Scholar 

  25. Pettit, P. (1996). The Common mind: An essay on psychology, society, and politics. New York: Oxford University Press.

    Book  Google Scholar 

  26. Riemann, G. (1873). On the hypotheses which lie at the bases of geometry. Nature, 8(1), 36–37.

    Google Scholar 

  27. Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P Ch., Keitt, T. H., & Plerou, V. (2000). Scale invariance and universality: organizing principles in complex systems. Physica A: Statistical Mechanics and Its Applications, 281(1), 60–68.

    Article  ADS  Google Scholar 

  28. Susskind, L., & Witten, E. (1998). The holographic bound in anti-de sitter space.arXiv.org, May 19, 1998.

    Google Scholar 

  29. Swingle, B. (2012). Constructing holographic spacetimes using entanglement renormalization. arXiv.org, September 14, 2012.

    Google Scholar 

  30. Van Raamsdonk, M. (2010). Building up spacetime with quantum entanglement. In General Relativity and Gravitation 42(10):

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Musser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Musser, G. (2017). Spacetime Is Doomed. In: Wuppuluri, S., Ghirardi, G. (eds) Space, Time and the Limits of Human Understanding. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-44418-5_17

Download citation

Publish with us

Policies and ethics