Skip to main content

Central and Mixed Venous O2 Saturation: A Physiological Appraisal

  • Chapter
  • First Online:
Monitoring Tissue Perfusion in Shock
  • 1431 Accesses

Abstract

This chapter reviews the physiological principles that underpin the clinical use of mixed venous oxygen saturation (SmvO2) and those of its purported surrogate, central venous O2 saturation (ScvO2). The development of techniques capable of measuring these variables is described, along with the clinical data in favor or against their use in various clinical conditions. The physiological conditions giving origin to ScvO2 are reviewed, as well as clinical data comparing SmvO2 to ScvO2. Recent developments regarding the use of ScvO2 to guide therapy in the resuscitation of septic patients are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinhart K, Bloos F. The value of venous oximetry. Curr Opin Crit Care. 2005;11:259–63.

    Article  PubMed  Google Scholar 

  2. Vincent JL. ScvO2 as a marker for resuscitation in intensive care. In: Kuhlen R, Moreno RP, Ranieri M, Rhodes A, editors. Controversies in intensive care medicine. Berlin: MWV Medizinisch Wissenschaftliche Verlagsgesellschaft; 2008. p. 77–81.

    Chapter  Google Scholar 

  3. Fick A. Ueber die Messung des Blutquantums in den Herzventrikeln. Sitzber Physik Med Ges Würzburg. 1870;2:16–28.

    Google Scholar 

  4. Henderson Y, Prince AL. Applications of gas analysis. II. The CO2 tension of the venous blood and the circulation rate. J Biol Chem. 1917;32:325–31.

    CAS  Google Scholar 

  5. Richards DW, Cournand A, Bryan NA. Applicability of the rebreathing method for determining mixed venous CO2 in cases of chronic pulmonary disease. J Clin Invest. 1935;14:173–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Forssmann W. Die Sondierung des rechten Herzens. Klin Wockschr. 1929;8:2085–9.

    Article  Google Scholar 

  7. Klein O. Zur Bestimmung des zirkulatorischen Minutenvolumens beim Menschen nach dem Fickschen Prinzip mittels Herzsondierung. Munchen Med Wchnschr. 1930;77:1311–2.

    Google Scholar 

  8. Cournand A, Ranges HA. Catheterization of the right auricle in man. Proc Soc Exptl Biol Med. 1941;46:462–8.

    Article  Google Scholar 

  9. Cournand A, Riley RL, Bradley SE, et al. Studies of the circulation in clinical shock. Surgery. 1943;13:964–70.

    CAS  Google Scholar 

  10. Swan HJ, Ganz W, Forrester J, et al. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.

    Article  CAS  PubMed  Google Scholar 

  11. Ganz W, Donoso R, Marcus HS, et al. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol. 1971;27:392–6.

    Article  PubMed  CAS  Google Scholar 

  12. Baele PL, McMichan JC, Marsh HM, et al. Continuous monitoring of mixed venous oxygen saturation in critically ill patients. Anesth Analg. 1982;61:513–7.

    Article  PubMed  CAS  Google Scholar 

  13. Boutros AR, Lee C. Value of continuous monitoring of mixed venous blood oxygen saturation in the management of critically ill patients. Crit Care Med. 1986;14:132–4.

    Article  PubMed  CAS  Google Scholar 

  14. Squara P. Central venous oxygenation: when physiology explains apparent discrepancies. Crit Care. 2014;18:579.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hartog C, Bloos F. Venous oxygen saturation. Best Pract Res Clin Anaesthesiol. 2014;28:419–28.

    Article  PubMed  Google Scholar 

  16. Muir AL, Kirby BJ, King AJ, et al. Mixed venous oxygen saturation in relation to cardiac output in myocardial infarction. Br Med J. 1970;4:276–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sumimoto T, Takayama Y, Iwasaka T, et al. Mixed venous oxygen saturation as a guide to tissue oxygenation and prognosis in patients with acute myocardial infarction. Am Heart J. 1991;122(1 Pt 1):27–33.

    Article  PubMed  CAS  Google Scholar 

  18. Pearse R, Dawson D, Fawcett J, et al. Changes in central venous saturation after major surgery, and association with outcome. Crit Care. 2005;9:R694–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holm J, Håkanson E, Vánky F, et al. Mixed venous oxygen saturation predicts short- and long-term outcome after coronary artery bypass grafting surgery: a retrospective cohort analysis. Br J Anaesth. 2011;107:344–50.

    Article  PubMed  CAS  Google Scholar 

  20. Rhodes A, Bennett ED. Early goal-directed therapy: an evidence-based review. Crit Care Med. 2004;32(11 Suppl):S448–50.

    Article  PubMed  Google Scholar 

  21. Joosten KF, Jacobs FI, van Klaarwater E, et al. Accuracy of an indirect calorimeter for mechanically ventilated infants and children: the influence of low rates of gas exchange and varying FIO2. Crit Care Med. 2000;28:3014–8.

    Article  PubMed  CAS  Google Scholar 

  22. Weissman C, Kemper M. Metabolic measurements in the critically ill. Crit Care Clin. 1995;11:169–97.

    Article  PubMed  CAS  Google Scholar 

  23. Light RB. Intrapulmonary oxygen consumption in experimental pneumococcal pneumonia. J Appl Physiol. 1988;64:2490–5.

    Article  PubMed  CAS  Google Scholar 

  24. Jolliet P, Thorens JB, Nicod L, et al. Relationship between pulmonary oxygen consumption, lung inflammation, and calculated venous admixture in patients with acute lung injury. Intensive Care Med. 1996;22:277–85.

    Article  PubMed  CAS  Google Scholar 

  25. Epstein CD, Peerless JR, Martin JE, et al. Comparison of methods of measurements of oxygen consumption in mechanically ventilated patients with multiple trauma: the Fick method versus indirect calorimetry. Crit Care Med. 2000;28:1363–9.

    Article  PubMed  CAS  Google Scholar 

  26. Sun XG, Hansen JE, Ting H, et al. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide. Chest. 2000;118:631–40.

    Article  PubMed  CAS  Google Scholar 

  27. Ronco JJ, Fenwick JC, Tweeddale MG, et al. Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA. 1993;270:1724–30.

    Article  CAS  PubMed  Google Scholar 

  28. Chawla LS, Zia H, Gutierrez G, et al. Lack of equivalence between central and mixed venous oxygen saturation. Chest. 2004;126:1891–6.

    Article  PubMed  Google Scholar 

  29. Goldman RH, Klughaupt M, Metcalf T, et al. Measurement of central venous oxygen saturation in patients with myocardial infarction. Circulation. 1968;38:941–6.

    Article  PubMed  CAS  Google Scholar 

  30. Routsi C, Vincent JL, Bakker J, et al. Relation between oxygen consumption and oxygen delivery in patients after cardiac surgery. Anesth Analg. 1993;77:1104–10.

    Article  PubMed  CAS  Google Scholar 

  31. Buheitel G, Scharf J, Hofbeck M, et al. Estimation of cardiac index by means of the arterial and the mixed venous oxygen content and pulmonary oxygen uptake determination in the early post-operative period following surgery of congenital heart disease. Intensive Care Med. 1994;20:500–3.

    Article  PubMed  CAS  Google Scholar 

  32. Inomata S, Nishikawa T, Taguchi M. Continuous monitoring of mixed venous oxygen saturation for detecting alterations in cardiac output after discontinuation of cardiopulmonary bypass. Br J Anaesth. 1994;72:11–6.

    Article  PubMed  CAS  Google Scholar 

  33. Colonna-Romano P, Horrow JC. Dissociation of mixed venous oxygen saturation and cardiac index during opioid induction. J Clin Anesth. 1994;6:95–8.

    Article  PubMed  CAS  Google Scholar 

  34. Sommers MS, Stevenson JS, Hamlin RL, et al. Mixed venous oxygen saturation and oxygen partial pressure as predictors of cardiac index after coronary artery bypass grafting. Heart Lung. 1993;22:112–20.

    PubMed  CAS  Google Scholar 

  35. Noll ML, Fountain RL. The relationship between mixed venous oxygen saturation and cardiac output in mechanically ventilated coronary artery bypass graft patients. Prog Cardiovasc Nurs. 1990;5:34–40.

    Article  PubMed  CAS  Google Scholar 

  36. Magilligan DJ Jr, Teasdall R, Eisinminger R, et al. Mixed venous oxygen saturation as a predictor of cardiac output in the postoperative cardiac surgical patient. Ann Thorac Surg. 1987;44:260–2.

    Article  PubMed  Google Scholar 

  37. Viale JP, Annat G, Lehot JJ, et al. Relationship between oxygen uptake and mixed venous oxygen saturation in the immediate postoperative period. Anesthesiology. 1994;80:278–83.

    Article  PubMed  CAS  Google Scholar 

  38. Powelson JA, Maini BS, Bishop RL, et al. Continuous monitoring of mixed venous oxygen saturation during aortic operations. Crit Care Med. 1992;20:332–6.

    Article  PubMed  CAS  Google Scholar 

  39. Nelson LD. Continuous venous oximetry in surgical patients. Ann Surg. 1986;203:329–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hassan E, Roffman DS, Applefeld MM. The value of mixed venous oxygen saturation as a therapeutic indicator in the treatment of advanced congestive heart failure. Am Heart J. 1987;113:743–9.

    Article  PubMed  CAS  Google Scholar 

  41. Richard C, Thuillez C, Pezzano M, et al. Relationship between mixed venous oxygen saturation and cardiac index in patients with chronic congestive heart failure. Chest. 1989;95:1289–94.

    Article  PubMed  CAS  Google Scholar 

  42. Jain A, Shroff SG, Janicki JS, et al. Relation between mixed venous oxygen saturation and cardiac index. Nonlinearity and normalization for oxygen uptake and hemoglobin. Chest. 1991;99:1403–9.

    Article  PubMed  CAS  Google Scholar 

  43. Gawlinski A. Can measurement of mixed venous oxygen saturation replace measurement of cardiac output in patients with advanced heart failure? Am J Crit Care. 1998;7:374–80.

    PubMed  CAS  Google Scholar 

  44. Kyff JV, Vaughn S, Yang SC, et al. Continuous monitoring of mixed venous oxygen saturation in patients with acute myocardial infarction. Chest. 1989;95:607–11.

    Article  PubMed  CAS  Google Scholar 

  45. Mohsenifar Z, Goldbach P, Tashkin DP, et al. Relationship between O2 delivery and O2 consumption in the adult respiratory distress syndrome. Chest. 1983;84:267–71.

    Article  PubMed  CAS  Google Scholar 

  46. Mahutte CK, Jaffe MB, Sasse SA, et al. Relationship of thermodilution cardiac output to metabolic measurements and mixed venous oxygen saturation. Chest. 1993;104:1236–42.

    Article  PubMed  CAS  Google Scholar 

  47. Lind L, Skoog G, Malstam J. Relations between mixed venous oxygen saturation and hemodynamic variables in patients subjected to abdominal aortic aneurysm surgery and in patients with septic shock. Ups J Med Sci. 1993;98:83–7.

    Article  PubMed  CAS  Google Scholar 

  48. Ruokonen E, Takala J, Uusaro A. Effect of vasoactive treatment on the relationship between mixed venous and regional oxygen saturation. Crit Care Med. 1991;19:1365–9.

    Article  PubMed  CAS  Google Scholar 

  49. Vaughn S, Puri VK. Cardiac output changes and continuous mixed venous oxygen saturation measurement in the critically ill. Crit Care Med. 1988;16:495–8.

    Article  PubMed  CAS  Google Scholar 

  50. Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011;184:514–20.

    Article  PubMed  Google Scholar 

  51. Krogh A. The number and the distribution of capillaries in muscle with the calculation of the oxygen pressure necessary for supplying the tissue. J Physiol Lond. 1919;52:409–515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Honig CR, Connett RJ, Gayeski TE. O2 transport and its interaction with metabolism; a systems view of aerobic capacity. Med Sci Sports Exerc. 1992;24:47–53.

    Article  PubMed  CAS  Google Scholar 

  53. Marx G, Reinhart K. Venous oximetry. Curr Opin Crit Care. 2006;12:263–8.

    Article  PubMed  Google Scholar 

  54. Ellsworth ML, Popel AS, Pittman RN. Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res. 1988;35:341–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Poole DC, Copp SW, Hirai DM, et al. Dynamics of muscle microcirculatory and blood-myocyte O2 flux during contractions. Acta Physiol (Oxford). 2011;202:293–310.

    Article  CAS  Google Scholar 

  56. Secomb TW, Hsu R. Simulation of O2 transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am J Phys. 1994;267:H1214–21.

    CAS  Google Scholar 

  57. Gutierrez G. The rate of oxygen release and its effect on capillary O2 tension: a mathematical analysis. Respir Physiol. 1986;63:79–96.

    Article  PubMed  CAS  Google Scholar 

  58. Popel AS. Theory of oxygen transport to tissue. Crit Rev Biomed Eng. 1989;17:257–321.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Gayeski TE, Honig CR. Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am J Phys. 1991;260(2 Pt 2):H522–31.

    CAS  Google Scholar 

  60. Shepherd AP, Kiel JW. A model of countercurrent shunting of oxygen in the intestinal villus. Am J Phys. 1992;262(4 Pt 2):H1136–42.

    CAS  Google Scholar 

  61. Gardiner BS, Smith DW, O'Connor PM, et al. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney. Am J Physiol Renal Physiol. 2011;300:F1339–52.

    Article  PubMed  CAS  Google Scholar 

  62. Honig CR, Odoroff CL, Frierson JL. Capillary recruitment in exercise: rate, extent, uniformity, and relation to blood flow. Am J Phys. 1980;238:H31–42.

    CAS  Google Scholar 

  63. Shoemaker WC, Appel PL, Kram HB. Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest. 1992;102:208–15.

    Article  PubMed  CAS  Google Scholar 

  64. Krafft P, Steltzer H, Hiesmayr M. Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events. Chest. 1993;103:900–6.

    Article  PubMed  CAS  Google Scholar 

  65. De Backer D, Creteur J, Noordally O, et al. Does hepato-splanchnic VO2/DO2 dependency exist in critically ill septic patients? Am J Respir Crit Care Med. 1998;157:1219–25.

    Article  PubMed  Google Scholar 

  66. Meier-Hellmann A, Hannemann L, Specht M. The relationship between mixed venous and hepatic venous O2 saturation in patients with septic shock. Adv Exp Med Biol. 1994;345:701–7.

    Article  PubMed  CAS  Google Scholar 

  67. Ruokonen E, Takala J, Uusaro A. Effect of vasoactive treatment on the relationship between mixed venous and regional oxygen saturation. Crit Care Med. 1991;19:1365–9.

    Article  PubMed  CAS  Google Scholar 

  68. Dahn MS, Lange MP, Jacobs LA. Central mixed and splanchnic venous oxygen saturation monitoring. Intensive Care Med. 1988;14:373–8.

    Article  PubMed  CAS  Google Scholar 

  69. McDaniel LB, Zwischenberger JB, Vertrees RA, et al. Mixed venous oxygen saturation during cardiopulmonary bypass poorly predicts regional venous saturation. Anesth Analg. 1995;80:466–72.

    PubMed  CAS  Google Scholar 

  70. Sun XG, Hansen JE, Ting H, et al. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide. Chest. 2000;118:631–40.

    Article  PubMed  CAS  Google Scholar 

  71. Cain SM. Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physiol. 1977;42:228–34.

    Article  CAS  PubMed  Google Scholar 

  72. van der Hoeven MA, Maertzdorf WJ, Blanco CE. Relationship between mixed venous oxygen saturation and markers of tissue oxygenation in progressive hypoxic hypoxia and in isovolemic anemic hypoxia in 8- to 12-day-old piglets. Crit Care Med. 1999;27:1885–92.

    Article  PubMed  Google Scholar 

  73. Gutierrez G, Marini C, Acero AL, et al. Skeletal muscle PO2 during hypoxemia and isovolemic anemia. J Appl Physiol. 1990;68:2047–53.

    Article  PubMed  CAS  Google Scholar 

  74. Jee R, White N. The effect of inspired oxygen concentration on central venous oxygen saturation. J Intens Care Soc. 2007;8:7–10.

    Article  Google Scholar 

  75. Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  76. Dalen JE, Bone RC. Is it time to pull the pulmonary artery catheter? JAMA. 1996;276:916–8.

    Article  PubMed  CAS  Google Scholar 

  77. Harvey S, Harrison DA, Singer M, et al. PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–7.

    Article  PubMed  Google Scholar 

  78. Wiener RS, Welch HG. Trends in the use of the pulmonary artery catheter in the United States, 1993–2004. JAMA. 2007;298:423–9.

    Article  PubMed  CAS  Google Scholar 

  79. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7:204–11.

    Article  PubMed  CAS  Google Scholar 

  80. Gutgesell HP, Williams RL. Caval samples as indicators on mixed venous oxygen saturation: implications in atrial septal defects. Cardiovasc Dis. 1974;1:160–4.

    PubMed  PubMed Central  Google Scholar 

  81. Miller HC, Brown DJ, Miller GA. Comparison of formulae used to estimate oxygen saturation of mixed venous blood from caval samples. Br Heart J. 1974;36:446–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Thomsen A. Calculation of oxygen saturation of mixed venous blood in infants. Scand J Lab Invest. 1978;38:389–92.

    Article  CAS  Google Scholar 

  83. Weber H, Grimm T, Albert J. The oxygen saturation of blood in the vena cavae, right heart chambers, and pulmonary artery, comparison of formulae to estimate mixed venous blood in healthy infants and children. Z Kardiol. 1980;69:504–7.

    PubMed  CAS  Google Scholar 

  84. Zhang J, Shan C, Zhang YU, et al. Blood gas analysis of the coronary sinus in patients with heart failure. Biomed Rep. 2015;3:379–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Berridge JC. Influence of cardiac output on the correlation between mixed venous and central venous oxygen saturation. Br J Anaesth. 1992;69:409–10.

    Article  PubMed  CAS  Google Scholar 

  86. Barratt-Boyes BG, Wood EH. The oxygen saturation of blood in the venae cavae,right-heart chambers, and pulmonary vessels of healthy subjects. J Lab Clin Med. 1957;50:93–106.

    PubMed  CAS  Google Scholar 

  87. Bouchacourt JP, Kohn E, Riva J, et al. Contribution of the coronary sinus blood to the pulmonary artery oxygen saturation gradient in cardiac surgery patients. Minerva Anestesiol. 2011;77:579–84.

    PubMed  CAS  Google Scholar 

  88. Dueck MH, Klimek M, Appenrodt S, et al. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005;103:249–57.

    Article  PubMed  Google Scholar 

  89. Edwards JD, Mayall RM. Importance of the sampling site for measurement of mixed venous oxygen saturation in shock. Crit Care Med. 1998;26:1356–60.

    Article  PubMed  CAS  Google Scholar 

  90. el-Masry A, Mukhtar AM, el-Sherbeny AM. Comparison of central venous oxygen saturation and mixed venous oxygen saturation during liver transplantation. Anaesthesia. 2009;64:378–82.

    Article  PubMed  CAS  Google Scholar 

  91. Faber T. Central venous versus mixed venous oxygen content. Acta Anaesthesiol Scand Suppl. 1995;107:33–6.

    Article  PubMed  CAS  Google Scholar 

  92. Gasparovic H, Gabelica R, Ostojic Z, et al. Diagnostic accuracy of central venous saturation in estimating mixed venous saturation is proportional to cardiac performance among cardiac surgical patients. J Crit Care. 2014;29:828–34.

    Article  PubMed  Google Scholar 

  93. Goldman RH, Braniff B, Harrison DC, et al. The use of central venous oxygen saturation measurements in a coronary care unit. Ann Intern Med. 1968;68:1280–7.

    Article  PubMed  CAS  Google Scholar 

  94. Gutierrez G, Venbrux A, Ignacio E, et al. The concentration of oxygen, lactate and glucose in the central veins, right heart, and pulmonary artery: a study in patients with pulmonary hypertension. Crit Care. 2007;11:R44.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gutierrez G, Chawla LS, Seneff MG, et al. Lactate concentration gradient from right atrium to pulmonary artery. Crit Care. 2005;9:R425–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ho KM, Harding R, Chamberlain J, et al. A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth. 2010;24:434–9.

    Article  PubMed  Google Scholar 

  97. Kopterides P, Bonovas S, Mavrou I, et al. Venous oxygen saturation and lactate gradient from superior vena cava to pulmonary artery in patients with septic shock. Shock. 2009;31:561–7.

    Article  PubMed  Google Scholar 

  98. Ladakis C, Myrianthefs P, Karabinis A, et al. Central venous and mixed venous oxygen saturation in critically ill patients. Respiration. 2001;68:279–85.

    Article  PubMed  CAS  Google Scholar 

  99. Lee J, Wright F, Barber R, et al. Central venous oxygen saturation in shock: a study in man. Anesthesiology. 1972;36(5):472–8.

    Article  PubMed  CAS  Google Scholar 

  100. Lequeux PY, Bouckaert Y, Sekkat H, et al. Continuous mixed venous and central venous oxygen saturation in ardiac surgery with cardiopulmonary bypass. Eur J Anesthesiol. 2010;27:295–9.

    Article  Google Scholar 

  101. Lorentzen AG, Lindskov C, Sloth E, et al. Central venous oxygen saturation cannot replace mixed venous saturation in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2008;22:853–7.

    Article  PubMed  Google Scholar 

  102. Martin C, Auffray JP, Badetti C, et al. Monitoring of central venous oxygen saturation versus mixed venous oxygen saturation in critically ill patients. Intensive Care Med. 1992;18:101–4.

    Article  PubMed  CAS  Google Scholar 

  103. Reinhart K, Kuhn HJ, Hartog C. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–8.

    Article  PubMed  Google Scholar 

  104. Sander M, Spies CD, Foer A. Agreement of central venous saturation and mixed venous saturation in cardiac surgery patients. Intensive Care Med. 2007;33:1719–25.

    Article  PubMed  Google Scholar 

  105. Scheinman MM, Brown MA, Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation. 1969;40:165–72.

    Article  PubMed  CAS  Google Scholar 

  106. Suehiro K, Tanaka K, Matsura T, et al. Discrepancy between superior vena cava saturation and mixed venous oxygen saturation can predict postoperative complications in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2014;28:528–33.

    Article  PubMed  Google Scholar 

  107. Tahvanainen J, Meretoja O, Nikki P. Can central venous blood replace mixed venous blood samples? Crit Care Med. 1982;10:758–61.

    Article  PubMed  CAS  Google Scholar 

  108. Turnaoglu S, Tugrul M, Camci E, et al. Clinical applicability of the substitution of mixed venous oxygen saturation with central venous oxygen saturation. J Cardiothorac Vasc Anesth. 2001;15:574–9.

    Article  PubMed  CAS  Google Scholar 

  109. van Beest PA, van Ingen J, Boerma EC, et al. No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care. 2010;14:R219.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Varpula M, Karlsson S, Ruokonen E, et al. Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med. 2006;32:1336–43.

    Article  PubMed  Google Scholar 

  111. Yazigi A, Abou-Zeid H, Madi-Jebara S, et al. Correlation between central venous oxygen saturation and oxygen delivery changes following fluid therapy. Acta Anaesthesiol Scand. 2008;52:1213–7.

    Article  PubMed  CAS  Google Scholar 

  112. Vincent JL. Does central venous oxygen saturation accurately reflect mixed venous oxygen saturation? Nothing is simple, unfortunately. Intensive Care Med. 1992;18:386–7.

    Article  PubMed  CAS  Google Scholar 

  113. Rivers E. Mixed vs central venous oxygen saturation may be not numerically equal, but both are still clinically useful. Chest. 2006;129:507–8.

    Article  PubMed  Google Scholar 

  114. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vincent JL. Does central venous oxygen saturation accurately reflect mixed venous oxygen saturation? Nothing is simple, unfortunately. Intensive Care Med. 1992;18:386–7.

    Article  PubMed  CAS  Google Scholar 

  116. Glamann DB, Lange RA, Hillis LD. Incidence and significance of a “step-down” in oxygen saturation from superior vena cava to pulmonary artery. Am J Cardiol. 1991;68:695–7.

    Article  PubMed  CAS  Google Scholar 

  117. Gutierrez G, Comignani P, Huespe L, et al. Central venous to mixed venous blood oxygen and lactate gradients are associated with outcome in critically ill patients. Intensive Care Med. 2008;34:1662–8.

    Article  PubMed  Google Scholar 

  118. Heiselman D, Jones J, Cannon L. Continuous monitoring of mixed venous oxygen saturation in septic shock. J Clin Monit. 1986;2:237–45.

    Article  PubMed  CAS  Google Scholar 

  119. Ouellette DR, Shah SZ. Comparison of outcomes from sepsis between patients with and without pre-existing left ventricular dysfunction: a case-control analysis. Crit Care. 2014;18:R79.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bracht H, Hänggi M, Jeker B, et al. Incidence of low central venous oxygen saturation during unplanned admissions in a multidisciplinary intensive care unit: an observational study. Crit Care. 2007;11:R2.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Boulain T, Garot D, Vignon P, et al. Clinical Research in Intensive Care and Sepsis Group. Prevalence of low central venous oxygen saturation in the first hours of intensive care unit admission and associated mortality in septic shock patients: a prospective multicentre study. Crit Care. 2014;18:609.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pope JV, Jones AE, Gaieski DF, et al. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010;55:40–6.

    Article  PubMed  Google Scholar 

  123. Park JS, Kim SJ, Lee SW, et al. Initial low oxygen extraction ratio is related to severe organ dysfunction and high in-hospital mortality in severe sepsis and septic shock patients. J Emerg Med. 2015;49:261–7.

    Article  PubMed  Google Scholar 

  124. Varpula M, Tallgren M, Saukkonen K. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–71.

    Article  PubMed  Google Scholar 

  125. Svedjeholm R, Hakanson E, Szabo Z. Routine SvO2 measurement after CABG surgery with a surgically introduced pulmonary artery catheter. Eur J Cardiothorac Surg. 1999;16:450–7.

    Article  PubMed  CAS  Google Scholar 

  126. Routsi C, Vincent JL, Bakker J, et al. Relation between oxygen consumption and oxygen delivery in patients after cardiac surgery. Anesth Analg. 1993;77:1104–10.

    Article  PubMed  CAS  Google Scholar 

  127. Pearse R, Dawson D, Fawcett J. Changes in central venous saturation after major surgery, and association with outcome. Crit Care. 2005;9:R694–9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Collaborative Study Group on Perioperative ScvO2 Monitoring. Multicentre study on peri- and postoperative central venous oxygen saturation in high-risk surgical patients. Crit Care. 2006;10:R158.

    Article  PubMed Central  Google Scholar 

  129. Perz S, Uhlig T, Kohl M, et al. Low and “supranormal” central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med. 2011;37:52–9.

    Article  PubMed  CAS  Google Scholar 

  130. Scalea TM, Hartnett RW, Duncan AO, et al. Central venous oxygen saturation: a useful clinical tool in trauma patients. J Trauma. 1990;30:1539–43.

    Article  PubMed  CAS  Google Scholar 

  131. Bannon MP, O’Neill CM, Martin M, et al. Central venous oxygen saturation, arterial base deficit, and lactate concentration in trauma patients. Am Surg. 1995;61:738–45.

    PubMed  CAS  Google Scholar 

  132. Hosking C, Wilander P, Goosen J, et al. Low central venous oxygen saturation in haemodynamically stabilized trauma patients is associated with poor outcome. Acta Anaesthesiol Scand. 2011;55:713–21.

    Article  PubMed  CAS  Google Scholar 

  133. Laine GA, Hu BY, Wang S, et al. Isolated high lactate or low central venous oxygen saturation after cardiac surgery and association with outcome. J Cardiothorac Vasc Anesth. 2013;27:1271–6.

    Article  PubMed  CAS  Google Scholar 

  134. Hu BY, Laine GA, Wang S, et al. Combined central venous oxygen saturation and lactate as markers of occult hypoperfusion and outcome following cardiac surgery. J Cardiothorac Vasc Anesth. 2012;26:52–7.

    Article  PubMed  CAS  Google Scholar 

  135. Park JH, Lee J, Park YS, et al. Prognostic value of central venous oxygen saturation and blood lactate levels measured simultaneously in the same patients with severe systemic inflammatory response syndrome and severe sepsis. Lung. 2014;192:435–40.

    Article  PubMed  CAS  Google Scholar 

  136. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, et al. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Puskarich MA, Trzeciak S, Shapiro NI, et al. Emergency Medicine Shock Research Network (EMSHOCKNET). Prognostic value and agreement of achieving lactate clearance or central venous oxygen saturation goals during early sepsis resuscitation. Acad Emerg Med. 2012;19:252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Teixeira C, da Silva NB, Savi A, et al. Central venous saturation is a predictor of reintubation in difficult-to-wean patients. Crit Care Med. 2010;38:491–6.

    Article  PubMed  Google Scholar 

  139. Armaganidis A, Dhainaut JF. Weaning from artificial respiration: value of continuous monitoring of mixed venous oxygen saturation. Ann Fr Anesth Reanim. 1989;8:708–15.

    Article  PubMed  CAS  Google Scholar 

  140. Zakynthinos S, Routsi C, Vassilakopoulos T, et al. Differential cardiovascular responses during weaning failure: effects on tissue oxygenation and lactate. Intensive Care Med. 2005;31:1634–42.

    Article  PubMed  Google Scholar 

  141. Jubran A, Mathru M, Dries D, et al. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:1763–9.

    Article  PubMed  CAS  Google Scholar 

  142. Chertoff J, Chisum M, Garcia B, et al. Lactate kinetics in sepsis and septic shock: a review of the literature and rationale for further research. J Intensive Care. 2015;3:39.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gilbert EM, Haupt MT, Mandanas RY, et al. The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis. 1986;134:873–8.

    Article  CAS  PubMed  Google Scholar 

  144. Dantzker DR, Foresman B, Gutierrez G. Oxygen supply and utilization relationships. A reevaluation. Am Rev Respir Dis. 1991;143:675–9.

    Article  CAS  PubMed  Google Scholar 

  145. Shoemaker WC, Appel PL, Kram HB, et al. Sequence of physiologic patterns in surgical septic shock. Crit Care Med. 1993;21:1876–89.

    Article  PubMed  CAS  Google Scholar 

  146. Shoemaker WC, Appel PL, Kram HB. Oxygen transport measurements to evaluate tissue perfusion and titrate therapy: dobutamine and dopamine effects. Crit Care Med. 1991;19:672–88.

    Article  PubMed  CAS  Google Scholar 

  147. Steffes CP, Bender JS, Levison MA. Blood transfusion and oxygen consumption in surgical sepsis. Crit Care Med. 1991;19:512–7.

    Article  PubMed  CAS  Google Scholar 

  148. Gattinoni L, Brazzi L, Pelosi P, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333:1025–32.

    Article  CAS  PubMed  Google Scholar 

  149. Shoemaker WC. Goal-oriented hemodynamic therapy. N Engl J Med. 1996;334:799–800.

    Article  PubMed  CAS  Google Scholar 

  150. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  151. Rivers EP, Martin GB, Smithline H, Rady MY, Schultz CH, Goetting MG, Appleton TJ, Nowak RM. The clinical implications of continuous central venous oxygen saturation during human CPR. Ann Emerg Med. 1992;21:1094–101.

    Article  PubMed  CAS  Google Scholar 

  152. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign Management Guidelines Committee. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.

    Article  PubMed  Google Scholar 

  153. Severe sepsis bundles. http://www.ihi.org/resources/Pages/Tools/SevereSepsisBundles.aspx. Accessed 21 Dec 2015.

  154. Certification: getting serious about sepsis. http://www.jointcommission.org/assets/1/6/Certification_Getting_Serious_About_Sepsis.pdf. Accessed 21 Dec 2015.

  155. The ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.

    Article  PubMed Central  CAS  Google Scholar 

  156. The ARISE Investigators and the ANZICS Clinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.

    Article  CAS  Google Scholar 

  157. Mouncey PR, Osborn TM, Power GS, et al. ProMISe Trial Investigators. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.

    Article  CAS  PubMed  Google Scholar 

  158. van Beest PA, Hofstra JJ, Schultz MJ, et al. The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care. 2008;12:R33.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Godoy MCB, Leitman BS, de Groot PM, et al. Pictorial essay. Chest radiography in the ICU: part 2, evaluation of cardiovascular lines and other devices. Am J Roentgenolo. 2012;198:572–81.

    Article  Google Scholar 

  160. Stonelake PA, Bodenham AR. The carina as a radiological landmark for central venous catheter tip position. Br J Anaesth. 2006;96:335–40.

    Article  PubMed  CAS  Google Scholar 

  161. Hernandez G, Peña H, Cornejo R, et al. Impact of emergency intubation on central venous oxygen saturation in critically ill patients: a multicenter observational study. Crit Care. 2009;13:R63.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Needham DM, Yang T, Dinglas VD. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome. A prospective cohort study. Am J Respir Crit Care Med. 2015;191:177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Waechter J, Kumar A, Lapinsky SE, et al. Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Interaction between fluids and vasoactive agents on mortality in septic shock: a multicenter, observational study. Crit Care Med. 2014;42:2158–68.

    Article  PubMed  CAS  Google Scholar 

  164. Sterling SA, Miller WR, Pryor J, et al. The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med. 2015;43:1907–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Rivers EP, Yataco AC, Jaehne AK, et al. Oxygen extraction and perfusion markers in severe sepsis and septic shock: diagnostic, therapeutic and outcome implications. Curr Opin Crit Care. 2015;21:381–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutierrez, G. (2018). Central and Mixed Venous O2 Saturation: A Physiological Appraisal. In: Pinto Lima, A., Silva, E. (eds) Monitoring Tissue Perfusion in Shock. Springer, Cham. https://doi.org/10.1007/978-3-319-43130-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43130-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43128-4

  • Online ISBN: 978-3-319-43130-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics